Skip to content
Snippets Groups Projects
Commit 4768b64c authored by bbartels's avatar bbartels
Browse files

quad: remove imu_logger, we can get what we need from normal logs

resolves #4
parent 7618ebbe
No related branches found
No related tags found
No related merge requests found
Showing
with 0 additions and 2714 deletions
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?fileVersion 4.0.0?>
<cproject storage_type_id="org.eclipse.cdt.core.XmlProjectDescriptionStorage">
<storageModule moduleId="org.eclipse.cdt.core.settings">
<cconfiguration id="xilinx.gnu.arm.exe.debug.980189137">
<storageModule buildSystemId="org.eclipse.cdt.managedbuilder.core.configurationDataProvider" id="xilinx.gnu.arm.exe.debug.980189137" moduleId="org.eclipse.cdt.core.settings" name="Debug">
<externalSettings/>
<extensions>
<extension id="com.xilinx.sdk.managedbuilder.XELF.arm" point="org.eclipse.cdt.core.BinaryParser"/>
<extension id="org.eclipse.cdt.core.GmakeErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.CWDLocator" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GCCErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GASErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GLDErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
</extensions>
</storageModule>
<storageModule moduleId="cdtBuildSystem" version="4.0.0">
<configuration artifactExtension="elf" artifactName="${ProjName}" buildArtefactType="org.eclipse.cdt.build.core.buildArtefactType.exe" buildProperties="org.eclipse.cdt.build.core.buildType=org.eclipse.cdt.build.core.buildType.debug,org.eclipse.cdt.build.core.buildArtefactType=org.eclipse.cdt.build.core.buildArtefactType.exe" cleanCommand="rm -rf" description="" id="xilinx.gnu.arm.exe.debug.980189137" name="Debug" parent="xilinx.gnu.arm.exe.debug">
<folderInfo id="xilinx.gnu.arm.exe.debug.980189137." name="/" resourcePath="">
<toolChain id="xilinx.gnu.arm.exe.debug.toolchain.1195127676" name="Xilinx ARM GNU Toolchain" superClass="xilinx.gnu.arm.exe.debug.toolchain">
<targetPlatform binaryParser="com.xilinx.sdk.managedbuilder.XELF.arm" id="xilinx.arm.target.gnu.base.debug.2072264921" isAbstract="false" name="Debug Platform" superClass="xilinx.arm.target.gnu.base.debug"/>
<builder buildPath="${workspace_loc:/modular_quad_pid}/Debug" enableAutoBuild="true" id="xilinx.gnu.arm.toolchain.builder.debug.2124876787" keepEnvironmentInBuildfile="false" managedBuildOn="true" name="GNU make" superClass="xilinx.gnu.arm.toolchain.builder.debug"/>
<tool id="xilinx.gnu.arm.c.toolchain.assembler.debug.192056667" name="ARM gcc assembler" superClass="xilinx.gnu.arm.c.toolchain.assembler.debug">
<inputType id="xilinx.gnu.assembler.input.532832448" superClass="xilinx.gnu.assembler.input"/>
</tool>
<tool id="xilinx.gnu.arm.c.toolchain.compiler.debug.177835003" name="ARM gcc compiler" superClass="xilinx.gnu.arm.c.toolchain.compiler.debug">
<option defaultValue="gnu.c.optimization.level.none" id="xilinx.gnu.compiler.option.optimization.level.1900496019" name="Optimization Level" superClass="xilinx.gnu.compiler.option.optimization.level" value="gnu.c.optimization.level.none" valueType="enumerated"/>
<option id="xilinx.gnu.compiler.option.debugging.level.1207856754" name="Debug Level" superClass="xilinx.gnu.compiler.option.debugging.level" value="gnu.c.debugging.level.max" valueType="enumerated"/>
<option id="xilinx.gnu.compiler.inferred.swplatform.includes.2123463819" name="Software Platform Include Path" superClass="xilinx.gnu.compiler.inferred.swplatform.includes" valueType="includePath">
<listOptionValue builtIn="false" value="../../system_bsp/ps7_cortexa9_0/include"/>
</option>
<option id="xilinx.gnu.compiler.symbols.defined.1696008720" name="Defined symbols (-D)" superClass="xilinx.gnu.compiler.symbols.defined"/>
<inputType id="xilinx.gnu.arm.c.compiler.input.909725989" name="C source files" superClass="xilinx.gnu.arm.c.compiler.input"/>
</tool>
<tool id="xilinx.gnu.arm.cxx.toolchain.compiler.debug.1470236349" name="ARM g++ compiler" superClass="xilinx.gnu.arm.cxx.toolchain.compiler.debug">
<option defaultValue="gnu.c.optimization.level.none" id="xilinx.gnu.compiler.option.optimization.level.9972228" name="Optimization Level" superClass="xilinx.gnu.compiler.option.optimization.level" valueType="enumerated"/>
<option id="xilinx.gnu.compiler.option.debugging.level.595503730" name="Debug Level" superClass="xilinx.gnu.compiler.option.debugging.level" value="gnu.c.debugging.level.max" valueType="enumerated"/>
<option id="xilinx.gnu.compiler.inferred.swplatform.includes.53367111" name="Software Platform Include Path" superClass="xilinx.gnu.compiler.inferred.swplatform.includes" valueType="includePath">
<listOptionValue builtIn="false" value="../../system_bsp/ps7_cortexa9_0/include"/>
</option>
</tool>
<tool id="xilinx.gnu.arm.toolchain.archiver.585254344" name="ARM archiver" superClass="xilinx.gnu.arm.toolchain.archiver"/>
<tool id="xilinx.gnu.arm.c.toolchain.linker.debug.360488201" name="ARM gcc linker" superClass="xilinx.gnu.arm.c.toolchain.linker.debug">
<option id="xilinx.gnu.linker.inferred.swplatform.lpath.47881921" name="Software Platform Library Path" superClass="xilinx.gnu.linker.inferred.swplatform.lpath" valueType="libPaths">
<listOptionValue builtIn="false" value="../../system_bsp/ps7_cortexa9_0/lib"/>
</option>
<option id="xilinx.gnu.linker.inferred.swplatform.flags.349145084" name="Software Platform Inferred Flags" superClass="xilinx.gnu.linker.inferred.swplatform.flags" valueType="libs">
<listOptionValue builtIn="false" value="-Wl,--start-group,-lxil,-lgcc,-lc,--end-group"/>
</option>
<option id="xilinx.gnu.c.linker.option.lscript.972374298" name="Linker Script" superClass="xilinx.gnu.c.linker.option.lscript" value="../src/lscript.ld" valueType="string"/>
<option id="xilinx.gnu.c.link.option.libs.1025826490" name="Libraries (-l)" superClass="xilinx.gnu.c.link.option.libs" valueType="libs">
<listOptionValue builtIn="false" value="m"/>
</option>
<inputType id="xilinx.gnu.linker.input.777404607" superClass="xilinx.gnu.linker.input">
<additionalInput kind="additionalinputdependency" paths="$(USER_OBJS)"/>
<additionalInput kind="additionalinput" paths="$(LIBS)"/>
</inputType>
<inputType id="xilinx.gnu.linker.input.lscript.634888687" name="Linker Script" superClass="xilinx.gnu.linker.input.lscript"/>
</tool>
<tool id="xilinx.gnu.arm.cxx.toolchain.linker.debug.1921379343" name="ARM g++ linker" superClass="xilinx.gnu.arm.cxx.toolchain.linker.debug">
<option id="xilinx.gnu.linker.inferred.swplatform.lpath.1819794269" name="Software Platform Library Path" superClass="xilinx.gnu.linker.inferred.swplatform.lpath" valueType="libPaths">
<listOptionValue builtIn="false" value="../../system_bsp/ps7_cortexa9_0/lib"/>
</option>
<option id="xilinx.gnu.linker.inferred.swplatform.flags.1650054208" name="Software Platform Inferred Flags" superClass="xilinx.gnu.linker.inferred.swplatform.flags" valueType="libs">
<listOptionValue builtIn="false" value="-Wl,--start-group,-lxil,-lgcc,-lc,--end-group"/>
</option>
<option id="xilinx.gnu.c.linker.option.lscript.1506564015" name="Linker Script" superClass="xilinx.gnu.c.linker.option.lscript" value="../src/lscript.ld" valueType="string"/>
</tool>
<tool id="xilinx.gnu.arm.size.debug.923967150" name="ARM Print Size" superClass="xilinx.gnu.arm.size.debug"/>
</toolChain>
</folderInfo>
</configuration>
</storageModule>
<storageModule moduleId="org.eclipse.cdt.core.externalSettings"/>
</cconfiguration>
<cconfiguration id="xilinx.gnu.arm.exe.release.255973624">
<storageModule buildSystemId="org.eclipse.cdt.managedbuilder.core.configurationDataProvider" id="xilinx.gnu.arm.exe.release.255973624" moduleId="org.eclipse.cdt.core.settings" name="Release">
<externalSettings/>
<extensions>
<extension id="com.xilinx.sdk.managedbuilder.XELF.arm" point="org.eclipse.cdt.core.BinaryParser"/>
<extension id="org.eclipse.cdt.core.GmakeErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.CWDLocator" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GCCErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GASErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
<extension id="org.eclipse.cdt.core.GLDErrorParser" point="org.eclipse.cdt.core.ErrorParser"/>
</extensions>
</storageModule>
<storageModule moduleId="cdtBuildSystem" version="4.0.0">
<configuration artifactExtension="elf" artifactName="${ProjName}" buildArtefactType="org.eclipse.cdt.build.core.buildArtefactType.exe" buildProperties="org.eclipse.cdt.build.core.buildType=org.eclipse.cdt.build.core.buildType.release,org.eclipse.cdt.build.core.buildArtefactType=org.eclipse.cdt.build.core.buildArtefactType.exe" cleanCommand="rm -rf" description="" id="xilinx.gnu.arm.exe.release.255973624" name="Release" parent="xilinx.gnu.arm.exe.release">
<folderInfo id="xilinx.gnu.arm.exe.release.255973624." name="/" resourcePath="">
<toolChain id="xilinx.gnu.arm.exe.release.toolchain.1375808537" name="Xilinx ARM GNU Toolchain" superClass="xilinx.gnu.arm.exe.release.toolchain">
<targetPlatform binaryParser="com.xilinx.sdk.managedbuilder.XELF.arm" id="xilinx.arm.target.gnu.base.release.230721338" isAbstract="false" name="Release Platform" superClass="xilinx.arm.target.gnu.base.release"/>
<builder buildPath="${workspace_loc:/modular_quad_pid}/Release" enableAutoBuild="true" id="xilinx.gnu.arm.toolchain.builder.release.122813927" keepEnvironmentInBuildfile="false" managedBuildOn="true" name="GNU make" superClass="xilinx.gnu.arm.toolchain.builder.release"/>
<tool id="xilinx.gnu.arm.c.toolchain.assembler.release.1899854338" name="ARM gcc assembler" superClass="xilinx.gnu.arm.c.toolchain.assembler.release">
<inputType id="xilinx.gnu.assembler.input.756511915" superClass="xilinx.gnu.assembler.input"/>
</tool>
<tool id="xilinx.gnu.arm.c.toolchain.compiler.release.85270120" name="ARM gcc compiler" superClass="xilinx.gnu.arm.c.toolchain.compiler.release">
<option defaultValue="gnu.c.optimization.level.more" id="xilinx.gnu.compiler.option.optimization.level.515686013" name="Optimization Level" superClass="xilinx.gnu.compiler.option.optimization.level" valueType="enumerated"/>
<option id="xilinx.gnu.compiler.option.debugging.level.1121150517" name="Debug Level" superClass="xilinx.gnu.compiler.option.debugging.level" value="gnu.c.debugging.level.none" valueType="enumerated"/>
<option id="xilinx.gnu.compiler.inferred.swplatform.includes.687694973" name="Software Platform Include Path" superClass="xilinx.gnu.compiler.inferred.swplatform.includes" valueType="includePath">
<listOptionValue builtIn="false" value="../../system_bsp/ps7_cortexa9_0/include"/>
</option>
<inputType id="xilinx.gnu.arm.c.compiler.input.846429887" name="C source files" superClass="xilinx.gnu.arm.c.compiler.input"/>
</tool>
<tool id="xilinx.gnu.arm.cxx.toolchain.compiler.release.1846278293" name="ARM g++ compiler" superClass="xilinx.gnu.arm.cxx.toolchain.compiler.release">
<option defaultValue="gnu.c.optimization.level.more" id="xilinx.gnu.compiler.option.optimization.level.1613253262" name="Optimization Level" superClass="xilinx.gnu.compiler.option.optimization.level" valueType="enumerated"/>
<option id="xilinx.gnu.compiler.option.debugging.level.1485305325" name="Debug Level" superClass="xilinx.gnu.compiler.option.debugging.level" value="gnu.c.debugging.level.none" valueType="enumerated"/>
<option id="xilinx.gnu.compiler.inferred.swplatform.includes.2144106422" name="Software Platform Include Path" superClass="xilinx.gnu.compiler.inferred.swplatform.includes" valueType="includePath">
<listOptionValue builtIn="false" value="../../system_bsp/ps7_cortexa9_0/include"/>
</option>
</tool>
<tool id="xilinx.gnu.arm.toolchain.archiver.86822110" name="ARM archiver" superClass="xilinx.gnu.arm.toolchain.archiver"/>
<tool id="xilinx.gnu.arm.c.toolchain.linker.release.264708896" name="ARM gcc linker" superClass="xilinx.gnu.arm.c.toolchain.linker.release">
<option id="xilinx.gnu.linker.inferred.swplatform.lpath.444912795" name="Software Platform Library Path" superClass="xilinx.gnu.linker.inferred.swplatform.lpath" valueType="libPaths">
<listOptionValue builtIn="false" value="../../system_bsp/ps7_cortexa9_0/lib"/>
</option>
<option id="xilinx.gnu.linker.inferred.swplatform.flags.1169214283" name="Software Platform Inferred Flags" superClass="xilinx.gnu.linker.inferred.swplatform.flags" valueType="libs">
<listOptionValue builtIn="false" value="-Wl,--start-group,-lxil,-lgcc,-lc,--end-group"/>
</option>
<option id="xilinx.gnu.c.linker.option.lscript.1266246445" name="Linker Script" superClass="xilinx.gnu.c.linker.option.lscript" value="../src/lscript.ld" valueType="string"/>
<inputType id="xilinx.gnu.linker.input.1933167678" superClass="xilinx.gnu.linker.input">
<additionalInput kind="additionalinputdependency" paths="$(USER_OBJS)"/>
<additionalInput kind="additionalinput" paths="$(LIBS)"/>
</inputType>
<inputType id="xilinx.gnu.linker.input.lscript.574206172" name="Linker Script" superClass="xilinx.gnu.linker.input.lscript"/>
</tool>
<tool id="xilinx.gnu.arm.cxx.toolchain.linker.release.1512126497" name="ARM g++ linker" superClass="xilinx.gnu.arm.cxx.toolchain.linker.release">
<option id="xilinx.gnu.linker.inferred.swplatform.lpath.1491656562" name="Software Platform Library Path" superClass="xilinx.gnu.linker.inferred.swplatform.lpath" valueType="libPaths">
<listOptionValue builtIn="false" value="../../system_bsp/ps7_cortexa9_0/lib"/>
</option>
<option id="xilinx.gnu.linker.inferred.swplatform.flags.1353247076" name="Software Platform Inferred Flags" superClass="xilinx.gnu.linker.inferred.swplatform.flags" valueType="libs">
<listOptionValue builtIn="false" value="-Wl,--start-group,-lxil,-lgcc,-lc,--end-group"/>
</option>
<option id="xilinx.gnu.c.linker.option.lscript.486002186" name="Linker Script" superClass="xilinx.gnu.c.linker.option.lscript" value="../src/lscript.ld" valueType="string"/>
</tool>
<tool id="xilinx.gnu.arm.size.release.362029751" name="ARM Print Size" superClass="xilinx.gnu.arm.size.release"/>
</toolChain>
</folderInfo>
</configuration>
</storageModule>
<storageModule moduleId="org.eclipse.cdt.core.externalSettings"/>
</cconfiguration>
</storageModule>
<storageModule moduleId="org.eclipse.cdt.core.LanguageSettingsProviders"/>
<storageModule moduleId="cdtBuildSystem" version="4.0.0">
<project id="modular_quad_pid.xilinx.gnu.arm.exe.832182557" name="Xilinx ARM Executable" projectType="xilinx.gnu.arm.exe"/>
</storageModule>
<storageModule moduleId="scannerConfiguration">
<autodiscovery enabled="true" problemReportingEnabled="true" selectedProfileId=""/>
<scannerConfigBuildInfo instanceId="xilinx.gnu.arm.exe.debug.980189137;xilinx.gnu.arm.exe.debug.980189137.">
<autodiscovery enabled="true" problemReportingEnabled="true" selectedProfileId="com.xilinx.managedbuilder.ui.ARMGCCManagedMakePerProjectProfileC"/>
</scannerConfigBuildInfo>
<scannerConfigBuildInfo instanceId="xilinx.gnu.arm.exe.release.255973624;xilinx.gnu.arm.exe.release.255973624.;xilinx.gnu.arm.c.toolchain.compiler.release.85270120;xilinx.gnu.arm.c.compiler.input.846429887">
<autodiscovery enabled="true" problemReportingEnabled="true" selectedProfileId="com.xilinx.managedbuilder.ui.ARMGCCManagedMakePerProjectProfileC"/>
</scannerConfigBuildInfo>
<scannerConfigBuildInfo instanceId="xilinx.gnu.arm.exe.release.255973624;xilinx.gnu.arm.exe.release.255973624.">
<autodiscovery enabled="true" problemReportingEnabled="true" selectedProfileId="com.xilinx.managedbuilder.ui.ARMGCCManagedMakePerProjectProfileC"/>
</scannerConfigBuildInfo>
<scannerConfigBuildInfo instanceId="xilinx.gnu.arm.exe.debug.980189137;xilinx.gnu.arm.exe.debug.980189137.;xilinx.gnu.arm.c.toolchain.compiler.debug.177835003;xilinx.gnu.arm.c.compiler.input.909725989">
<autodiscovery enabled="true" problemReportingEnabled="true" selectedProfileId="com.xilinx.managedbuilder.ui.ARMGCCManagedMakePerProjectProfileC"/>
</scannerConfigBuildInfo>
</storageModule>
<storageModule moduleId="refreshScope" versionNumber="2">
<configuration configurationName="Release">
<resource resourceType="PROJECT" workspacePath="/modular_quad_pid"/>
</configuration>
<configuration configurationName="Debug">
<resource resourceType="PROJECT" workspacePath="/modular_quad_pid"/>
</configuration>
</storageModule>
<storageModule moduleId="org.eclipse.cdt.internal.ui.text.commentOwnerProjectMappings"/>
</cproject>
Debug/
bootimage/
<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
<name>imu_logger</name>
<comment></comment>
<projects>
<project>system_bsp_new</project>
<project>system_bsp</project>
</projects>
<buildSpec>
<buildCommand>
<name>org.eclipse.cdt.managedbuilder.core.genmakebuilder</name>
<arguments>
</arguments>
</buildCommand>
<buildCommand>
<name>org.eclipse.cdt.managedbuilder.core.ScannerConfigBuilder</name>
<triggers>full,incremental,</triggers>
<arguments>
</arguments>
</buildCommand>
</buildSpec>
<natures>
<nature>org.eclipse.cdt.core.cnature</nature>
<nature>org.eclipse.cdt.managedbuilder.core.managedBuildNature</nature>
<nature>org.eclipse.cdt.managedbuilder.core.ScannerConfigNature</nature>
</natures>
</projectDescription>
/*******************************************************************/
/* */
/* This file is automatically generated by linker script generator.*/
/* */
/* Version: Xilinx EDK 14.7 EDK_P.20131013 */
/* */
/* Copyright (c) 2010 Xilinx, Inc. All rights reserved. */
/* */
/* Description : Cortex-A9 Linker Script */
/* */
/*******************************************************************/
_STACK_SIZE = DEFINED(_STACK_SIZE) ? _STACK_SIZE : 0x2000;
_HEAP_SIZE = DEFINED(_HEAP_SIZE) ? _HEAP_SIZE : 0x2000;
_ABORT_STACK_SIZE = DEFINED(_ABORT_STACK_SIZE) ? _ABORT_STACK_SIZE : 1024;
_SUPERVISOR_STACK_SIZE = DEFINED(_SUPERVISOR_STACK_SIZE) ? _SUPERVISOR_STACK_SIZE : 2048;
_FIQ_STACK_SIZE = DEFINED(_FIQ_STACK_SIZE) ? _FIQ_STACK_SIZE : 1024;
_UNDEF_STACK_SIZE = DEFINED(_UNDEF_STACK_SIZE) ? _UNDEF_STACK_SIZE : 1024;
/* Define Memories in the system */
MEMORY
{
ps7_ddr_0_S_AXI_BASEADDR : ORIGIN = 0x00100000, LENGTH = 0x1FF00000
ps7_ram_0_S_AXI_BASEADDR : ORIGIN = 0x00000000, LENGTH = 0x00030000
ps7_ram_1_S_AXI_BASEADDR : ORIGIN = 0xFFFF0000, LENGTH = 0x0000FE00
}
/* Specify the default entry point to the program */
ENTRY(_vector_table)
/* Define the sections, and where they are mapped in memory */
SECTIONS
{
.text : {
*(.vectors)
*(.boot)
*(.text)
*(.text.*)
*(.gnu.linkonce.t.*)
*(.plt)
*(.gnu_warning)
*(.gcc_execpt_table)
*(.glue_7)
*(.glue_7t)
*(.vfp11_veneer)
*(.ARM.extab)
*(.gnu.linkonce.armextab.*)
} > ps7_ddr_0_S_AXI_BASEADDR
.init : {
KEEP (*(.init))
} > ps7_ddr_0_S_AXI_BASEADDR
.fini : {
KEEP (*(.fini))
} > ps7_ddr_0_S_AXI_BASEADDR
.rodata : {
__rodata_start = .;
*(.rodata)
*(.rodata.*)
*(.gnu.linkonce.r.*)
__rodata_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.rodata1 : {
__rodata1_start = .;
*(.rodata1)
*(.rodata1.*)
__rodata1_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.sdata2 : {
__sdata2_start = .;
*(.sdata2)
*(.sdata2.*)
*(.gnu.linkonce.s2.*)
__sdata2_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.sbss2 : {
__sbss2_start = .;
*(.sbss2)
*(.sbss2.*)
*(.gnu.linkonce.sb2.*)
__sbss2_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.data : {
__data_start = .;
*(.data)
*(.data.*)
*(.gnu.linkonce.d.*)
*(.jcr)
*(.got)
*(.got.plt)
__data_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.data1 : {
__data1_start = .;
*(.data1)
*(.data1.*)
__data1_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.got : {
*(.got)
} > ps7_ddr_0_S_AXI_BASEADDR
.ctors : {
__CTOR_LIST__ = .;
___CTORS_LIST___ = .;
KEEP (*crtbegin.o(.ctors))
KEEP (*(EXCLUDE_FILE(*crtend.o) .ctors))
KEEP (*(SORT(.ctors.*)))
KEEP (*(.ctors))
__CTOR_END__ = .;
___CTORS_END___ = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.dtors : {
__DTOR_LIST__ = .;
___DTORS_LIST___ = .;
KEEP (*crtbegin.o(.dtors))
KEEP (*(EXCLUDE_FILE(*crtend.o) .dtors))
KEEP (*(SORT(.dtors.*)))
KEEP (*(.dtors))
__DTOR_END__ = .;
___DTORS_END___ = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.fixup : {
__fixup_start = .;
*(.fixup)
__fixup_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.eh_frame : {
*(.eh_frame)
} > ps7_ddr_0_S_AXI_BASEADDR
.eh_framehdr : {
__eh_framehdr_start = .;
*(.eh_framehdr)
__eh_framehdr_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.gcc_except_table : {
*(.gcc_except_table)
} > ps7_ddr_0_S_AXI_BASEADDR
.mmu_tbl (ALIGN(16384)) : {
__mmu_tbl_start = .;
*(.mmu_tbl)
__mmu_tbl_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.ARM.exidx : {
__exidx_start = .;
*(.ARM.exidx*)
*(.gnu.linkonce.armexidix.*.*)
__exidx_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.preinit_array : {
__preinit_array_start = .;
KEEP (*(SORT(.preinit_array.*)))
KEEP (*(.preinit_array))
__preinit_array_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.init_array : {
__init_array_start = .;
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
__init_array_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.fini_array : {
__fini_array_start = .;
KEEP (*(SORT(.fini_array.*)))
KEEP (*(.fini_array))
__fini_array_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.ARM.attributes : {
__ARM.attributes_start = .;
*(.ARM.attributes)
__ARM.attributes_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.sdata : {
__sdata_start = .;
*(.sdata)
*(.sdata.*)
*(.gnu.linkonce.s.*)
__sdata_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.sbss (NOLOAD) : {
__sbss_start = .;
*(.sbss)
*(.sbss.*)
*(.gnu.linkonce.sb.*)
__sbss_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.tdata : {
__tdata_start = .;
*(.tdata)
*(.tdata.*)
*(.gnu.linkonce.td.*)
__tdata_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.tbss : {
__tbss_start = .;
*(.tbss)
*(.tbss.*)
*(.gnu.linkonce.tb.*)
__tbss_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.bss (NOLOAD) : {
__bss_start = .;
*(.bss)
*(.bss.*)
*(.gnu.linkonce.b.*)
*(COMMON)
__bss_end = .;
} > ps7_ddr_0_S_AXI_BASEADDR
_SDA_BASE_ = __sdata_start + ((__sbss_end - __sdata_start) / 2 );
_SDA2_BASE_ = __sdata2_start + ((__sbss2_end - __sdata2_start) / 2 );
/* Generate Stack and Heap definitions */
.heap (NOLOAD) : {
. = ALIGN(16);
_heap = .;
HeapBase = .;
_heap_start = .;
. += _HEAP_SIZE;
_heap_end = .;
HeapLimit = .;
} > ps7_ddr_0_S_AXI_BASEADDR
.stack (NOLOAD) : {
. = ALIGN(16);
_stack_end = .;
. += _STACK_SIZE;
_stack = .;
__stack = _stack;
. = ALIGN(16);
_irq_stack_end = .;
. += _STACK_SIZE;
__irq_stack = .;
_supervisor_stack_end = .;
. += _SUPERVISOR_STACK_SIZE;
. = ALIGN(16);
__supervisor_stack = .;
_abort_stack_end = .;
. += _ABORT_STACK_SIZE;
. = ALIGN(16);
__abort_stack = .;
_fiq_stack_end = .;
. += _FIQ_STACK_SIZE;
. = ALIGN(16);
__fiq_stack = .;
_undef_stack_end = .;
. += _UNDEF_STACK_SIZE;
. = ALIGN(16);
__undef_stack = .;
} > ps7_ddr_0_S_AXI_BASEADDR
_end = .;
}
/*
* PID.c
*
* Created on: Nov 10, 2014
* Author: ucart
*/
#include "PID.h"
#include <math.h>
#include <float.h>
// The generic PID diagram. This function takes in pid parameters (PID_t * pid) and calculates the output "pid_correction"
// part based on those parameters.
//
// + --- error ------------------ P + --- ----------------------------
// setpoint ---> / sum \ --------->| Kp * error |--------------->/ sum \ -------->| output: "pid_correction" |
// \ / | ------------------ \ / ----------------------------
// --- | --- ||
// - ^ | + ^ ^ + ||
// | | ------------------------------- | | ------- \/------------
// | |----->| Ki * accumulated error * dt |----+ | | |
// | | ------------------------------- I | | SYSTEM |
// | | | | |
// | | | --------||------------
// | | | ||
// | | ---------------------------------- | ||
// | |----->| Kd * (error - last error) / dt |----+ ||
// | ---------------------------------- D ||
// | ||
// | -----------\/-----------
// |____________________________________________________________| Sensor measurements: |
// | "current point" |
// ------------------------
//
PID_values pid_computation(PID_t *pid) {
float P = 0.0, I = 0.0, D = 0.0;
// calculate the current error
float error = pid->setpoint - pid->current_point;
// Accumulate the error (if Ki is less than epsilon, rougly 0,
// then reset the accumulated error for safety)
if (fabs(pid->Ki) <= FLT_EPSILON) {
pid->acc_error = 0;
} else {
pid->acc_error += error;
}
float change_in_error = error - pid->prev_error;
// Compute each term's contribution
P = pid->Kp * error;
I = pid->Ki * pid->acc_error * pid->dt;
D = pid->Kd * (change_in_error / pid->dt);
PID_values ret = {P, I, D, error, change_in_error, P + I + D};
pid->prev_error = error; // Store the current error into the PID_t
pid->pid_correction = P + I + D; // Store the computed correction
return ret;
}
/*
* PID.h
*
* Created on: Nov 10, 2014
* Author: ucart
*/
#ifndef PID_H_
#define PID_H_
#include "type_def.h"
// Yaw constants
// when using units of degrees
//#define YAW_ANGULAR_VELOCITY_KP 40.0f
//#define YAW_ANGULAR_VELOCITY_KI 0.0f
//#define YAW_ANGULAR_VELOCITY_KD 0.0f
//#define YAW_ANGLE_KP 2.6f
//#define YAW_ANGLE_KI 0.0f
//#define YAW_ANGLE_KD 0.0f
// when using units of radians
#define YAW_ANGULAR_VELOCITY_KP 190.0f * 2292.0f//200.0f * 2292.0f
#define YAW_ANGULAR_VELOCITY_KI 0.0f
#define YAW_ANGULAR_VELOCITY_KD 0.0f
#define YAW_ANGLE_KP 2.6f
#define YAW_ANGLE_KI 0.0f
#define YAW_ANGLE_KD 0.0f
// Roll constants
//#define ROLL_ANGULAR_VELOCITY_KP 0.95f
//#define ROLL_ANGULAR_VELOCITY_KI 0.0f
//#define ROLL_ANGULAR_VELOCITY_KD 0.13f//0.4f//0.7f
//#define ROLL_ANGLE_KP 17.0f //9.0f
//#define ROLL_ANGLE_KI 0.0f
//#define ROLL_ANGLE_KD 0.3f // 0.2f
//#define YPOS_KP 0.0f
//#define YPOS_KI 0.0f
//#define YPOS_KD 0.0f
// when using units of radians
#define ROLL_ANGULAR_VELOCITY_KP 100.0f*46.0f//102.0f*46.0f//9384.0f//204.0f * 46.0f
#define ROLL_ANGULAR_VELOCITY_KI 0.0f
#define ROLL_ANGULAR_VELOCITY_KD 100.f*5.5f//102.0f*6.8f//1387.2//204.0f * 6.8f
#define ROLL_ANGLE_KP 15.0f
#define ROLL_ANGLE_KI 0.0f
#define ROLL_ANGLE_KD 0.2f
#define YPOS_KP 0.015f
#define YPOS_KI 0.005f
#define YPOS_KD 0.03f
//Pitch constants
// when using units of degrees
//#define PITCH_ANGULAR_VELOCITY_KP 0.95f
//#define PITCH_ANGULAR_VELOCITY_KI 0.0f
//#define PITCH_ANGULAR_VELOCITY_KD 0.13f//0.35f//0.7f
//#define PITCH_ANGLE_KP 17.0f // 7.2f
//#define PITCH_ANGLE_KI 0.0f
//#define PITCH_ANGLE_KD 0.3f //0.3f
//#define XPOS_KP 40.0f
//#define XPOS_KI 0.0f
//#define XPOS_KD 10.0f//0.015f
// when using units of radians
#define PITCH_ANGULAR_VELOCITY_KP 100.0f*46.0f//101.0f*46.0f//9292.0f//202.0f * 46.0f
#define PITCH_ANGULAR_VELOCITY_KI 0.0f
#define PITCH_ANGULAR_VELOCITY_KD 100.0f*5.5f//101.0f*6.8f//1373.6//202.0f * 6.8f
#define PITCH_ANGLE_KP 15.0f
#define PITCH_ANGLE_KI 0.0f
#define PITCH_ANGLE_KD 0.2f
#define XPOS_KP -0.015f
#define XPOS_KI -0.005f
#define XPOS_KD -0.03f
//Throttle constants
#define ALT_ZPOS_KP 9804.0f
#define ALT_ZPOS_KI 817.0f
#define ALT_ZPOS_KD 7353.0f
// Computes control error and correction
PID_values pid_computation(PID_t *pid);
#endif /* PID_H_ */
This application is the PID implementation of the modular control loop. This is the same implementation as the existing quad controller. The mixer in this application needs to be changed to be correct according to common implementation.
/*
* actuator_command_processing.c
*
* Created on: Feb 20, 2016
* Author: ucart
*/
#include "actuator_command_processing.h"
#include "sensor_processing.h"
int actuator_command_processing(log_t* log_struct, user_input_t * user_input_struct, raw_actuator_t* raw_actuator_struct, actuator_command_t* actuator_command_struct)
{
Aero_to_PWMS(actuator_command_struct->pwms, raw_actuator_struct->controller_corrected_motor_commands);
// old_Aero_to_PWMS(actuator_command_struct->pwms, raw_actuator_struct->controller_corrected_motor_commands);
return 0;
}
/**
* Converts Aero 4 channel signals to PWM signals
* Aero channels are defined above
*/
void Aero_to_PWMS(int* PWMs, int* aero)
{
int motor0_bias = 0, motor1_bias = 0, motor2_bias = 0, motor3_bias = 0;
int pwm0 = 0, pwm1 = 0, pwm2 = 0, pwm3 = 0;
pwm0 = aero[THROTTLE] - aero[PITCH] - aero[ROLL] - aero[YAW] + motor0_bias;
pwm1 = aero[THROTTLE] + aero[PITCH] - aero[ROLL] + aero[YAW] + motor1_bias;
pwm2 = aero[THROTTLE] - aero[PITCH] + aero[ROLL] + aero[YAW] + motor2_bias;
pwm3 = aero[THROTTLE] + aero[PITCH] + aero[ROLL] - aero[YAW] + motor3_bias;
// printf("pwm0: %d\tpwm1: %d\tpwm2: %d\tpwm3: %d\n", pwm0, pwm1, pwm2, pwm3);
/**
* Boundary checks:
*
* #define min 100000
* #define max 200000
*/
if(pwm0 < min)
pwm0 = min;
else if(pwm0 > max)
pwm0 = max;
if(pwm1 < min)
pwm1 = min;
else if(pwm1 > max)
pwm1 = max;
if(pwm2 < min)
pwm2 = min;
else if(pwm2 > max)
pwm2 = max;
if(pwm3 < min)
pwm3 = min;
else if(pwm3 > max)
pwm3 = max;
PWMs[0] = pwm0;
PWMs[1] = pwm1;
PWMs[2] = pwm2;
PWMs[3] = pwm3;
// the array PWMs is then written directly to the PWM hardware registers
// the PWMs are in units of clock cycles, not percentage duty cycle
// use pwm/222,222 to get the duty cycle. the freq is 450 Hz on a 100MHz clock
}
/**
* Converts Aero 4 channel signals to PWM signals
* Aero channels are defined above
*
* *deprecated
*/
void old_Aero_to_PWMS(int* PWMs, int* aero) {
int motor0_bias = -9900, motor1_bias = -200, motor2_bias = -10200, motor3_bias = 250;
// int motor0_bias = -5000, motor1_bias = 0, motor2_bias = -5000, motor3_bias = 0;
// Throttle, pitch, roll, yaw as a percentage of their max - Range 0.0 - 100.0
float throttle_100 = (aero[THROTTLE] - THROTTLE_MIN) / (THROTTLE_RANGE*1.0);
float pitch_100 = (aero[PITCH] - PITCH_MIN) / (PITCH_RANGE*1.0);
float roll_100 = (aero[ROLL] - ROLL_MIN) / (ROLL_RANGE*1.0);
float yaw_100 = (aero[YAW] - YAW_MIN) / (YAW_RANGE*1.0);
// This adds a +/- 300 ms range bias for the throttle
int throttle_base = BASE + (int) 60000 * (throttle_100 - .5);
// This adds a +/- 200 ms range bias for the pitch
int pitch_base = (int) 60000 * (pitch_100 - .5);
// This adds a +/- 200 ms range bias for the roll
int roll_base = (int) 60000 * (roll_100 - .5);
// This adds a +/- 75 ms range bias for the yaw
int yaw_base = (int) 15000 * (yaw_100 - .5);
int pwm0, pwm1, pwm2, pwm3;
pwm1 = throttle_base + pitch_base/2 - roll_base/2 + yaw_base + motor1_bias;
pwm3 = throttle_base + pitch_base/2 + roll_base/2 - yaw_base + motor3_bias;
pwm0 = throttle_base - pitch_base/2 - roll_base/2 - yaw_base + motor0_bias;
pwm2 = throttle_base - pitch_base/2 + roll_base/2 + yaw_base + motor2_bias;
/**
* Boundary checks:
*
* #define min 100000
* #define max 200000
*/
if(pwm0 < min)
pwm0 = min;
else if(pwm0 > max)
pwm0 = max;
if(pwm1 < min)
pwm1 = min;
else if(pwm1 > max)
pwm1 = max;
if(pwm2 < min)
pwm2 = min;
else if(pwm2 > max)
pwm2 = max;
if(pwm3 < min)
pwm3 = min;
else if(pwm3 > max)
pwm3 = max;
PWMs[0] = pwm0;
PWMs[1] = pwm1;
PWMs[2] = pwm2;
PWMs[3] = pwm3;
// the array PWMs is then written directly to the PWM hardware registers
// the PWMs are in units of clock cycles, not percentage duty cycle
// use pwm/222,222 to get the duty cycle. the freq is 450 Hz on a 100MHz clock
}
/*
* actuator_command_processing.h
*
* Created on: Feb 20, 2016
* Author: ucart
*/
#ifndef ACTUATOR_COMMAND_PROCESSING_H_
#define ACTUATOR_COMMAND_PROCESSING_H_
#include <stdio.h>
#include "log_data.h"
#include "control_algorithm.h"
/**
* @brief
* Processes the commands to the actuators.
*
* @param log_struct
* structure of the data to be logged
*
* @param raw_actuator_struct
* structure of the commmands outputted to go to the actuators
*
* @param actuator_command_struct
* structure of the commmands to go to the actuators
*
* @return
* error message
*
*/
int actuator_command_processing(log_t* log_struct, user_input_t * user_input_struct, raw_actuator_t* raw_actuator_struct, actuator_command_t* actuator_command_struct);
void old_Aero_to_PWMS(int* PWMs, int* aero);
void Aero_to_PWMS(int* PWMs, int* aero);
#endif /* ACTUATOR_COMMAND_PROCESSING_H_ */
This diff is collapsed.
#ifndef _COMMANDS_H
#define _COMMANDS_H
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "type_def.h"
// ----------------------
// Helper stuff
#define MAX_TYPE 6
#define MAX_SUBTYPE 100
enum Message{
BEGIN_CHAR = 0xBE,
END_CHAR = 0xED
};
// This should also have double to avoid confusion with float values.
enum DataType
{
floatType,
intType,
stringType
};
// MESSAGE SUBTYPES
struct MessageSubtype{
char ID;
char cmdText[100];
char cmdDataType;
int (*functionPtr)(unsigned char *command, int dataLen, modular_structs_t *structs);
};
// MESSAGE TYPES
struct MessageType{
char ID;
struct MessageSubtype subtypes[MAX_SUBTYPE];
};
int debug(unsigned char *c, int dataLen, modular_structs_t *structs);
int update(unsigned char *c, int dataLen, modular_structs_t *structs);
int beginupdate(unsigned char *c, int dataLen, modular_structs_t *structs);
int logdata(unsigned char *c, int dataLen, modular_structs_t *structs);
int response(unsigned char *packet, int dataLen, modular_structs_t *structs);
int yawset(unsigned char *c, int dataLen, modular_structs_t *structs);
int yawp(unsigned char *c, int dataLen, modular_structs_t *structs);
int yawd(unsigned char *c, int dataLen, modular_structs_t *structs);
int rollset(unsigned char *c, int dataLen, modular_structs_t *structs);
int rollp(unsigned char *c, int dataLen, modular_structs_t *structs);
int rolld(unsigned char *c, int dataLen, modular_structs_t *structs);
int pitchset(unsigned char *c, int dataLen, modular_structs_t *structs);
int pitchp(unsigned char *c, int dataLen, modular_structs_t *structs);
int pitchd(unsigned char *c, int dataLen, modular_structs_t *structs);
int throttleset(unsigned char *c, int dataLen, modular_structs_t *structs);
int throttlep(unsigned char *c, int dataLen, modular_structs_t *structs);
int throttlei(unsigned char *c, int dataLen, modular_structs_t *structs);
int throttled(unsigned char *c, int dataLen, modular_structs_t *structs);
int accelreq(unsigned char *c, int dataLen, modular_structs_t *structs);
int gyroresp(unsigned char *c, int dataLen, modular_structs_t *structs);
int pitchangleresp(unsigned char *c, int dataLen, modular_structs_t *structs);
int rollangleresp(unsigned char *c, int dataLen, modular_structs_t *structs);
int gyroreq(unsigned char *c, int dataLen, modular_structs_t *structs);
int pitchanglereq(unsigned char *c, int dataLen, modular_structs_t *structs);
int rollanglereq(unsigned char *c, int dataLen, modular_structs_t *structs);
int accelresp(unsigned char *c, int dataLen, modular_structs_t *structs);
// TODO add in string to be read from the command line when sending a subtype of message
extern struct MessageType MessageTypes[MAX_TYPE];
#endif
#include "communication.h"
// QUAD & Ground Station
// Format the log data from log_message
//int formatData(unsigned char *log_msg, unsigned char *formattedCommand)
int formatPacket(metadata_t *metadata, void *data, unsigned char **formattedCommand)
{
*formattedCommand = malloc(sizeof(char) * metadata->data_len + 8);
/*if (formattedCommand == NULL)
{
return -1;
}*/
//----------------------------------------------------------------------------------------------
// index|| 0 | 1 | 2 | 3 & 4 | 5 & 6 | 7+ | end |
//---------------------------------------------------------------------------------------------|
// msg param|| beg char | msg type | msg subtype | msg id | data len (bytes) | data | checksum |
//-------------------------------------------------------------------------------------------- |
// bytes|| 1 | 1 | 1 | 2 | 2 | var | 1 |
//----------------------------------------------------------------------------------------------
// Begin Char:
(*formattedCommand)[0] = metadata->begin_char;
// Msg type:
(*formattedCommand)[1] = metadata->msg_type;
// Msg subtype
(*formattedCommand)[2] = metadata->msg_subtype;
//Msg id (msgNum is 2 bytes)
(*formattedCommand)[3] = metadata->msg_id;
// Data length and data - bytes 5&6 for len, 7+ for data
(*formattedCommand)[5] = metadata->data_len & 0x000000ff;
(*formattedCommand)[6] = (metadata->data_len >> 8) & 0x000000ff;
// printf("data length %d\n", metadata->data_len);
// printf("data length %x\n", (*formattedCommand)[5]);
// printf("data length %x\n", (*formattedCommand)[6]);
memcpy(&((*formattedCommand)[7]), data, metadata->data_len);
// Checksum
// receive data and calculate checksum
int i;
unsigned char packet_checksum = 0;
for(i = 0; i < 7 + metadata->data_len; i++)
{
packet_checksum ^= (*formattedCommand)[i];
}
// printf("Packet checksum: 0x%02x\n", packet_checksum);
(*formattedCommand)[7 + metadata->data_len] = packet_checksum;
return 0;
}
// returns the length of the data in bytes (datalen from packet) and fills data
// and metadata with the packet information
// use as follows:
//
// packet is the entire packet message (formatted)
// data is an unallocated (char *) (pass it to this function as &data)
// meta_data is a pointer to an instance of metadata_t
//
int parse_packet(unsigned char * packet, unsigned char ** data, metadata_t * meta_data)
{
//----------------------------------------------------------------------------------------------
// index|| 0 | 1 | 2 | 3 & 4 | 5 & 6 | 7+ | end |
//---------------------------------------------------------------------------------------------|
// msg param|| beg char | msg type | msg subtype | msg id | data len (bytes) | data | checksum |
//-------------------------------------------------------------------------------------------- |
// bytes|| 1 | 1 | 1 | 2 | 2 | var | 1 |
//----------------------------------------------------------------------------------------------
// first byte must be the begin char
if(packet[0] != 0xBE) {
printf("The first packet byte is not the begin char.\n");
return -1;
}
// receive metadata
meta_data->begin_char = packet[0];
meta_data->msg_type = packet[1];
meta_data->msg_subtype = packet[2];
meta_data->msg_id = (packet[4] << 8) | (packet[3]);
meta_data->data_len = (packet[6] << 8) | (packet[5]);
unsigned char packet_checksum = packet[7+meta_data->data_len];
// printf("msg_type: %x\n", meta_data->msg_type);
// printf("msg_subtype: %x\n", meta_data->msg_subtype);
// printf("msg_type: %d\n", meta_data->data_len);
int i;
// receive data
*data = malloc(meta_data->data_len);
for(i = 0; i < meta_data->data_len; i++)
{
(*data)[i] = packet[7+i];
}
// calculate checksum
unsigned char calculated_checksum = 0;
for(i = 0; i < meta_data->data_len + 7; i++)
{
calculated_checksum ^= packet[i];
}
// compare checksum
if(packet_checksum != calculated_checksum)
printf("Checksums did not match (Quadlog): 0x%02x\t0x%02x\n", packet_checksum, calculated_checksum);
//////////////////////////////
// Send an acknowledgment packet
// Send a reply to the ground station
int buf = meta_data->msg_id;
unsigned char *responsePacket;
metadata_t metadata =
{
BEGIN_CHAR,
MessageTypes[0].ID,
MessageTypes[0].subtypes[1].ID,
0,
sizeof(int)
};
formatPacket(&metadata, &buf, &responsePacket);
// Send each byte of the packet individually
for(i = 0; i < 8 + metadata.data_len; i++) {
// Debug print statement for all of the bytes being sent
//printf("%d: 0x%x\n", i, responsePacket[i]);
uart0_sendByte(responsePacket[i]);
}
free(responsePacket);
return 0;
}
// QUAD & Ground Station
// Process the command received
int processCommand(unsigned char *packet, modular_structs_t *structs) {
int validPacket;
unsigned char *data;
metadata_t metadata;
printf("Process Command.\n");
// Validate the message is correctly formatted
validPacket = parse_packet(packet, &data, &metadata);
if(validPacket != 0) {
printf("Packet is not valid.\n");
return -1;
}
if(metadata.data_len >= 0) {
// Call the appropriate subtype function
(* (MessageTypes[metadata.msg_type].subtypes[metadata.msg_subtype].functionPtr))(data, metadata.data_len, structs);
// printf("%s\n", MessageTypes[metadata.msg_type].subtypes[metadata.msg_subtype].cmdText);
return 0;
} else {
printf("Data length is less than 0.\n");
}
// Only gets here if there is an error
return -1;
}
#ifndef _COMMUNICATION_H
#define _COMMUNICATION_H
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include "commands.h"
#include "type_def.h"
#include "uart.h"
int formatCommand(unsigned char *command, unsigned char **formattedCommand);
int formatPacket(metadata_t *metadata, void *data, unsigned char **formattedCommand);
int logData(unsigned char *log_msg, unsigned char *formattedCommand);
int processCommand(unsigned char *command, modular_structs_t *structs);
int parse_packet(unsigned char * packet, unsigned char ** data, metadata_t * meta_data);
#endif
/*
* control_algorithm.c
*
* Created on: Feb 20, 2016
* Author: ucart
*/
// This implemented modular quadrotor software implements a PID control algorithm
#include "control_algorithm.h"
#include "communication.h"
#define ROLL_PITCH_MAX_ANGLE 0.3490 // 20 degrees
int control_algorithm_init(parameter_t * parameter_struct)
{
// HUMAN Piloted (RC) PID DEFINITIONS //////
// RC PIDs for roll (2 loops: angle --> angular velocity)
parameter_struct->roll_angle_pid.dt = 0.005; parameter_struct->roll_ang_vel_pid.dt = 0.005; // 5 ms calculation period
// RC PIDs for pitch (2 loops: angle --> angular velocity)
parameter_struct->pitch_angle_pid.dt = 0.005; parameter_struct->pitch_ang_vel_pid.dt = 0.005; // 5 ms calculation period
// initialize Yaw PID_t and PID constants
// RC PID for yaw (1 loop angular velocity)
parameter_struct->yaw_ang_vel_pid.dt = 0.005; // 5 ms calculation period
// AUTOMATIC Pilot (Position) PID DEFINITIONS //////
// Local X PID using a translation from X camera system data to quad local X position (3 loops: local y position --> angle --> angular velocity)
parameter_struct->local_x_pid.dt = 0.100;
// Local Y PID using a translation from Y camera system data to quad local Y position(3 loops: local x position --> angle --> angular velocity)
parameter_struct->local_y_pid.dt = 0.100;
// CAM PIDs for yaw (2 loops angle --> angular velocity)
parameter_struct->yaw_angle_pid.dt = 0.100;
// CAM PID for altitude (1 loop altitude)
parameter_struct->alt_pid.dt = 0.100;
// PID coeffiecients (Position)
setPIDCoeff(&(parameter_struct->local_y_pid), YPOS_KP, YPOS_KI, YPOS_KD);
setPIDCoeff(&(parameter_struct->local_x_pid), XPOS_KP, XPOS_KI, XPOS_KD);
setPIDCoeff(&(parameter_struct->alt_pid), ALT_ZPOS_KP, ALT_ZPOS_KI, ALT_ZPOS_KD);
// PID coefficients (Angle)
setPIDCoeff(&(parameter_struct->pitch_angle_pid), PITCH_ANGLE_KP, PITCH_ANGLE_KI, PITCH_ANGLE_KD);
setPIDCoeff(&(parameter_struct->roll_angle_pid), ROLL_ANGLE_KP, ROLL_ANGLE_KI, ROLL_ANGLE_KD);
setPIDCoeff(&(parameter_struct->yaw_angle_pid), YAW_ANGLE_KP, YAW_ANGLE_KI, YAW_ANGLE_KD);
// PID coefficients (Angular Velocity)
setPIDCoeff(&(parameter_struct->pitch_ang_vel_pid), PITCH_ANGULAR_VELOCITY_KP, PITCH_ANGULAR_VELOCITY_KI, PITCH_ANGULAR_VELOCITY_KD);
setPIDCoeff(&(parameter_struct->roll_ang_vel_pid), ROLL_ANGULAR_VELOCITY_KP, ROLL_ANGULAR_VELOCITY_KI, ROLL_ANGULAR_VELOCITY_KD);
setPIDCoeff(&(parameter_struct->yaw_ang_vel_pid), YAW_ANGULAR_VELOCITY_KP, YAW_ANGULAR_VELOCITY_KI, YAW_ANGULAR_VELOCITY_KD);
return 0;
}
int control_algorithm(log_t* log_struct, user_input_t * user_input_struct, sensor_t* sensor_struct, setpoint_t* setpoint_struct, parameter_t* parameter_struct, user_defined_t* user_defined_struct, raw_actuator_t* raw_actuator_struct, modular_structs_t* structs)
{
// use the 'flap' switch as the flight mode selector
int cur_fm_switch = read_flap(user_input_struct->rc_commands[FLAP]);
static int last_fm_switch = MANUAL_FLIGHT_MODE;
// reset flight_mode to MANUAL right away if the flap switch is in manual position
// to engage AUTO mode the code waits for a new packet after the flap is switched to auto
// before actually engaging AUTO mode
if(cur_fm_switch == MANUAL_FLIGHT_MODE)
user_defined_struct->flight_mode = MANUAL_FLIGHT_MODE;
static float roll_trim = 0.0;
static float pitch_trim = 0.0;
// flap switch was just toggled to auto flight mode
if((last_fm_switch != cur_fm_switch) && (cur_fm_switch == AUTO_FLIGHT_MODE))
{
user_defined_struct->engaging_auto = 1;
// Read in trimmed values because it should read trim values right when the pilot flips the flight mode switch
pitch_trim = user_input_struct->pitch_angle_manual_setpoint; //rc_commands[PITCH] - PITCH_CENTER;
roll_trim = user_input_struct->roll_angle_manual_setpoint; //rc_commands[ROLL] - ROLL_CENTER;
//sensor_struct->trimmedRCValues.yaw = yaw_manual_setpoint; //rc_commands[YAW] - YAW_CENTER;
// sensor_struct->trims.roll = raw_actuator_struct->controller_corrected_motor_commands[ROLL];
// sensor_struct->trims.pitch = raw_actuator_struct->controller_corrected_motor_commands[PITCH];
// sensor_struct->trims.yaw = raw_actuator_struct->controller_corrected_motor_commands[YAW];
sensor_struct->trims.throttle = user_input_struct->rc_commands[THROTTLE];
log_struct->trims.roll = sensor_struct->trims.roll;
log_struct->trims.pitch = sensor_struct->trims.pitch;
log_struct->trims.yaw = sensor_struct->trims.yaw;
log_struct->trims.throttle = sensor_struct->trims.throttle;
}
if(user_input_struct->hasPacket == 0x04 && user_defined_struct->engaging_auto == 1)
user_defined_struct->engaging_auto = 2;
// If the quad has received a packet and it's not an update packet
if(user_input_struct->hasPacket != -1 && user_input_struct->hasPacket != 0x04)
{
processCommand((unsigned char *)user_input_struct->sb->buf, structs);
}
// if the flap switch was toggled to AUTO_FLIGHT_MODE and we've received a new packet
// then record the current position as the desired position
// also reset the previous error and accumulated error from the position PIDs
if((cur_fm_switch == AUTO_FLIGHT_MODE) && (user_defined_struct->engaging_auto == 2))
{
// zero out the accumulated error so the I terms don't cause wild things to happen
parameter_struct->alt_pid.acc_error = 0.0;
parameter_struct->local_x_pid.acc_error = 0.0;
parameter_struct->local_y_pid.acc_error = 0.0;
// make previous error equal to the current so the D term doesn't spike
parameter_struct->alt_pid.prev_error = 0.0;
parameter_struct->local_x_pid.prev_error = 0.0;
parameter_struct->local_y_pid.prev_error = 0.0;
setpoint_struct->desiredQuadPosition.alt_pos = sensor_struct->currentQuadPosition.alt_pos;
setpoint_struct->desiredQuadPosition.x_pos = sensor_struct->currentQuadPosition.x_pos;
setpoint_struct->desiredQuadPosition.y_pos = sensor_struct->currentQuadPosition.y_pos;
setpoint_struct->desiredQuadPosition.yaw = 0.0;//currentQuadPosition.yaw;
// reset the flag that engages auto mode
user_defined_struct->engaging_auto = 0;
// finally engage the AUTO_FLIGHT_MODE
// this ensures that we've gotten a new update packet right after the switch was set to auto mode
user_defined_struct->flight_mode = AUTO_FLIGHT_MODE;
}
//PIDS///////////////////////////////////////////////////////////////////////
/* Position loop
* Reads current position, and outputs
* a pitch or roll for the angle loop PIDs
*/
// static int counter_between_packets = 0;
if(user_input_struct->hasPacket == 0x04)
{
parameter_struct->local_y_pid.current_point = sensor_struct->currentQuadPosition.y_pos;
parameter_struct->local_y_pid.setpoint = setpoint_struct->desiredQuadPosition.y_pos;
parameter_struct->local_x_pid.current_point = sensor_struct->currentQuadPosition.x_pos;
parameter_struct->local_x_pid.setpoint = setpoint_struct->desiredQuadPosition.x_pos;
parameter_struct->alt_pid.current_point = sensor_struct->currentQuadPosition.alt_pos;
parameter_struct->alt_pid.setpoint = setpoint_struct->desiredQuadPosition.alt_pos;
//logging and PID computation
log_struct->local_y_PID_values = pid_computation(&(parameter_struct->local_y_pid));
log_struct->local_x_PID_values = pid_computation(&(parameter_struct->local_x_pid));
log_struct->altitude_PID_values = pid_computation(&(parameter_struct->alt_pid));
// yaw angular position PID calculation
parameter_struct->yaw_angle_pid.current_point = sensor_struct->currentQuadPosition.yaw;// in radians
parameter_struct->yaw_angle_pid.setpoint = setpoint_struct->desiredQuadPosition.yaw; // constant setpoint
//logging and PID computation
log_struct->angle_yaw_PID_values = pid_computation(&(parameter_struct->yaw_angle_pid));
}
/* Angle loop
* Calculates current orientation, and outputs
* a pitch, roll, or yaw velocity for the angular velocity loop PIDs
*/
//angle boundaries
if(parameter_struct->local_x_pid.pid_correction > ROLL_PITCH_MAX_ANGLE)
{
parameter_struct->local_x_pid.pid_correction = ROLL_PITCH_MAX_ANGLE;
}
if(parameter_struct->local_x_pid.pid_correction < -ROLL_PITCH_MAX_ANGLE)
{
parameter_struct->local_x_pid.pid_correction = -ROLL_PITCH_MAX_ANGLE;
}
if(parameter_struct->local_y_pid.pid_correction > ROLL_PITCH_MAX_ANGLE)
{
parameter_struct->local_y_pid.pid_correction = ROLL_PITCH_MAX_ANGLE;
}
if(parameter_struct->local_y_pid.pid_correction < -ROLL_PITCH_MAX_ANGLE)
{
parameter_struct->local_y_pid.pid_correction = -ROLL_PITCH_MAX_ANGLE;
}
parameter_struct->pitch_angle_pid.current_point = sensor_struct->pitch_angle_filtered;
parameter_struct->pitch_angle_pid.setpoint =
(user_defined_struct->flight_mode == AUTO_FLIGHT_MODE)?
(parameter_struct->local_x_pid.pid_correction) + pitch_trim : user_input_struct->pitch_angle_manual_setpoint;
parameter_struct->roll_angle_pid.current_point = sensor_struct->roll_angle_filtered;
parameter_struct->roll_angle_pid.setpoint =
(user_defined_struct->flight_mode == AUTO_FLIGHT_MODE)?
(parameter_struct->local_y_pid.pid_correction) + roll_trim : user_input_struct->roll_angle_manual_setpoint;
//logging and PID computation
log_struct->angle_pitch_PID_values = pid_computation(&(parameter_struct->pitch_angle_pid));
log_struct->angle_roll_PID_values = pid_computation(&(parameter_struct->roll_angle_pid));
/* Angular Velocity Loop
* Takes the desired angular velocity from the angle loop,
* and calculates a PID correction with the current angular velocity
*/
// theta_dot is the angular velocity about the y-axis
// it is calculated from using the gimbal equations
parameter_struct->pitch_ang_vel_pid.current_point = sensor_struct->theta_dot;
parameter_struct->pitch_ang_vel_pid.setpoint = parameter_struct->pitch_angle_pid.pid_correction;
// phi_dot is the angular velocity about the x-axis
// it is calculated from using the gimbal equations
parameter_struct->roll_ang_vel_pid.current_point = sensor_struct->phi_dot;
parameter_struct->roll_ang_vel_pid.setpoint = parameter_struct->roll_angle_pid.pid_correction;
// Yaw angular velocity PID
// psi_dot is the angular velocity about the z-axis
// it is calculated from using the gimbal equations
parameter_struct->yaw_ang_vel_pid.current_point = sensor_struct->psi_dot;
parameter_struct->yaw_ang_vel_pid.setpoint = (user_defined_struct->flight_mode == AUTO_FLIGHT_MODE)?
parameter_struct->yaw_angle_pid.pid_correction : user_input_struct->yaw_manual_setpoint; // no trim added because the controller already works well
//logging and PID computation
log_struct->ang_vel_pitch_PID_values = pid_computation(&(parameter_struct->pitch_ang_vel_pid));
log_struct->ang_vel_roll_PID_values = pid_computation(&(parameter_struct->roll_ang_vel_pid));
log_struct->ang_vel_yaw_PID_values = pid_computation(&(parameter_struct->yaw_ang_vel_pid));
//END PIDs///////////////////////////////////////////////////////////////////////
// here for now so in case any flight command is not PID controlled, it will default to rc_command value:
memcpy(raw_actuator_struct->controller_corrected_motor_commands, user_input_struct->rc_commands, sizeof(int) * 6);
// don't use the PID corrections if the throttle is less than about 10% of its range
if((user_input_struct->rc_commands[THROTTLE] >
118000) || (user_defined_struct->flight_mode == AUTO_FLIGHT_MODE))
{
if(user_defined_struct->flight_mode == AUTO_FLIGHT_MODE)
{
//THROTTLE
raw_actuator_struct->controller_corrected_motor_commands[THROTTLE] =
((int)(parameter_struct->alt_pid.pid_correction)) + sensor_struct->trims.throttle;
//ROLL
raw_actuator_struct->controller_corrected_motor_commands[ROLL] =
parameter_struct->roll_ang_vel_pid.pid_correction; // + sensor_struct->trims.roll;
//PITCH
raw_actuator_struct->controller_corrected_motor_commands[PITCH] =
parameter_struct->pitch_ang_vel_pid.pid_correction; // + sensor_struct->trims.pitch;
//YAW
raw_actuator_struct->controller_corrected_motor_commands[YAW] =
parameter_struct->yaw_ang_vel_pid.pid_correction;// + sensor_struct->trims.yaw;
// static int slow_down = 0;
// slow_down++;
// if(slow_down % 50 == 0)
// printf("X: %.3f\tY: %.3f\tZ: %.3f\tX_s: %.3f\tX_c: %.3f\tY_s: %.3f\tY_c: %.3f\tZ_s: %.3f\tZ_c: %.3f\t\n",
// parameter_struct->local_x_pid.pid_correction,
// parameter_struct->local_y_pid.pid_correction,
// parameter_struct->alt_pid.pid_correction,
// parameter_struct->local_x_pid.setpoint, parameter_struct->local_x_pid.current_point,
// parameter_struct->local_y_pid.setpoint, parameter_struct->local_y_pid.current_point,
// parameter_struct->alt_pid.setpoint, parameter_struct->alt_pid.current_point);
}
else{
//ROLL
raw_actuator_struct->controller_corrected_motor_commands[ROLL] =
parameter_struct->roll_ang_vel_pid.pid_correction;
//PITCH
raw_actuator_struct->controller_corrected_motor_commands[PITCH] =
parameter_struct->pitch_ang_vel_pid.pid_correction;
//YAW
raw_actuator_struct->controller_corrected_motor_commands[YAW] =
parameter_struct->yaw_ang_vel_pid.pid_correction;
}
//BOUNDS CHECKING
if(raw_actuator_struct->controller_corrected_motor_commands[THROTTLE] < 0)
raw_actuator_struct->controller_corrected_motor_commands[THROTTLE] = 0;
//BOUNDS CHECKING
if(raw_actuator_struct->controller_corrected_motor_commands[ROLL] > 20000)
raw_actuator_struct->controller_corrected_motor_commands[ROLL] = 20000;
if(raw_actuator_struct->controller_corrected_motor_commands[ROLL] < -20000)
raw_actuator_struct->controller_corrected_motor_commands[ROLL] = -20000;
if(raw_actuator_struct->controller_corrected_motor_commands[PITCH] > 20000)
raw_actuator_struct->controller_corrected_motor_commands[PITCH] = 20000;
if(raw_actuator_struct->controller_corrected_motor_commands[PITCH] < -20000)
raw_actuator_struct->controller_corrected_motor_commands[PITCH] = -20000;
if(raw_actuator_struct->controller_corrected_motor_commands[YAW] > 20000)
raw_actuator_struct->controller_corrected_motor_commands[YAW] = 20000;
if(raw_actuator_struct->controller_corrected_motor_commands[YAW] < -20000)
raw_actuator_struct->controller_corrected_motor_commands[YAW] = -20000;
}
else
{
raw_actuator_struct->controller_corrected_motor_commands[ROLL] = 0;
raw_actuator_struct->controller_corrected_motor_commands[PITCH] = 0;
raw_actuator_struct->controller_corrected_motor_commands[YAW] = 0;
}
//logging
// here we are not actually duplicating the logging from the PID computation
// the PID computation logs PID_values struct where this logs the PID struct
// they contain different sets of data
log_struct->local_y_PID = parameter_struct->local_y_pid;
log_struct->local_x_PID = parameter_struct->local_x_pid;
log_struct->altitude_PID = parameter_struct->alt_pid;
log_struct->angle_roll_PID = parameter_struct->roll_angle_pid;
log_struct->angle_pitch_PID = parameter_struct->pitch_angle_pid;
log_struct->angle_yaw_PID = parameter_struct->yaw_angle_pid;
log_struct->ang_vel_roll_PID = parameter_struct->roll_ang_vel_pid;
log_struct->ang_vel_pitch_PID = parameter_struct->pitch_ang_vel_pid;
log_struct->ang_vel_yaw_PID = parameter_struct->yaw_ang_vel_pid;
last_fm_switch = cur_fm_switch;
if(user_input_struct->hasPacket != -1)
{
user_input_struct->sb->clear(user_input_struct->sb);
user_input_struct->hasPacket = -1;
}
return 0;
}
void setPIDCoeff(PID_t* p, float pValue, float iValue, float dValue) {
p->Kp = pValue;
p->Ki = iValue;
p->Kd = dValue;
}
/*
* control_algorithm.h
*
* Created on: Feb 20, 2016
* Author: ucart
*/
#ifndef CONTROL_ALGORITHM_H_
#define CONTROL_ALGORITHM_H_
#include <stdio.h>
#include "log_data.h"
#include "sensor_processing.h"
#include "quadposition.h"
#include "type_def.h"
/**
* @brief
* Initializes everything used in the control algorithm.
*
* @return
* error message
*
*/
int control_algorithm_init(parameter_t * parameter_struct);
/**
* @brief
* Runs the control algorithm on the data and outputs a command for actuators.
*
* @param log_struct
* structure of the data to be logged
*
* @param sensor_struct
* structure of the processed data from the sensors
*
* @param setpoint_struct
* structure of the setpoints used in the controller
*
* @param parameter_struct
* structure of the parameters used in the controller
*
* @param user_defined_struct
* structure of the user defined variables
*
* @param raw_actuator_struct
* structure of the commmands outputted to go to the actuators
*
* @return
* error message
*
*/
int control_algorithm(log_t* log_struct,
user_input_t * user_input_struct,
sensor_t* sensor_struct,
setpoint_t* setpoint_struct,
parameter_t* parameter_struct,
user_defined_t* user_defined_struct,
raw_actuator_t* raw_actuator_struct,
modular_structs_t* structs);
/**
* @brief
* Internally used functions
*
*/
void setPIDCoeff(PID_t* p, float pValue, float iValue, float dValue);
#endif /* CONTROL_ALGORITHM_H_ */
/*
* controllers.c
*
* Created on: Oct 11, 2014
* Author: ucart
*/
/**
* Lots of useful information in controllers.h, look in there first
*/
#include "controllers.h"
#include "iic_mpu9150_utils.h"
#include "quadposition.h"
#include "util.h"
#include "uart.h"
#include "sleep.h"
#include "stdio.h"
#include <math.h>
// 0 was -6600
//int motor0_bias = -4500, motor1_bias = 100, motor2_bias = 5300, motor3_bias = 10300;
int motor0_bias = -9900, motor1_bias = -200, motor2_bias = -10200, motor3_bias = 250;
/**
* Takes the raw signal inputs from the receiver and filters it so the
* quadcopter doesn't flip or do something extreme
*/
void filter_PWMs(int* mixer) {
}
/**
* Converts PWM signals into 4 channel pitch, roll, yaw, throttle
*/
// javey: unused
void PWMS_to_Aero(int* PWMs, int* aero) {
/**
* Reference used to derive equations
*/
// pwm0 = throttle_base - pitch_base + yaw_base;
// pwm1 = throttle_base + roll_base - yaw_base;
// pwm2 = throttle_base - roll_base - yaw_base;
// pwm3 = throttle_base + pitch_base + yaw_base;
aero[THROTTLE] = (PWMs[0] + PWMs[1] + PWMs[2] + PWMs[3]) / 4;
aero[ROLL] = (PWMs[1] - PWMs[2]) / 2;
aero[PITCH] = (PWMs[3] - PWMs[0]) / 2;
aero[YAW] = (PWMs[3] + PWMs[0] - PWMs[1] - PWMs[2]) / 4;
}
/*
* controllers.h
*
* Created on: Oct 11, 2014
* Author: ucart
*/
#ifndef _CONTROLLERS_H
#define _CONTROLLERS_H
#include "util.h"
#include "quadposition.h"
/**
*
* USING PLUS CONFIGURATION
* 0 R CW E
* 1 + 2 W R CCW CCW N S
* 3 W CW W
*
*
* USING X CONFIGURATION
*
*
* 0 2 R R CW CCW
* x
* 1 3 W W CCW CW
*/
#define X_CONFIG
/**
* Pin hook ups
*
* PWM Recorder port mapping
* 3.3 V || GND || PWM_REC_3 || PWM_REC_2 || PWM_REC_1 || PWM_REC_0
*
* Rx PINS
* GEAR -> JD7
* THROTTLE -> JE1
* AILE -> JE2
* ELEV -> JE3
* RUDD -> JE4
* GND -> JE5
*
* JE PMOD TOP PINS
* Unused || GND || YAW || PITCH || ROLL || THROTTLE
*
* BOTTOM PINS
*
* Unused || GND || PWM3 || PWM2 || PWM1 || PWM0
*/
/**
* Gear settings
* 1 - F mode = 171135
* 0 - Gear = 118363
* Kill if gear is around 118363
*/
/*
* Aero channel declaration
*/
#define THROTTLE 0
#define ROLL 1
#define PITCH 2
#define YAW 3
#define GEAR 4
#define FLAP 5
/**
* Signals from the Rx mins, maxes and ranges
*/
#define THROTTLE_MAX 191900
#define THROTTLE_MIN 110200
#define THROTTLE_RANGE THROTTLE_MAX - THROTTLE_MIN
#define ROLL_MAX 170200
#define ROLL_MIN 129400
#define ROLL_CENTER 149800
#define ROLL_RANGE ROLL_MAX - ROLL_MIN
#define PITCH_MAX 169900
#define PITCH_MIN 129500
#define PITCH_CENTER 149700
#define PITCH_RANGE PITCH_MAX - PITCH_MIN
#define YAW_MAX 169400
#define YAW_MIN 129300
#define YAW_CENTER 149800
#define YAW_RANGE YAW_MAX - YAW_MIN
#define GEAR_1 170800
#define GEAR_0 118300
#define FLAP_1 192000
#define FLAP_0 107600
#define GEAR_KILL GEAR_0 // The kill point for the program
#define BASE 150000
#define min 100000
#define max 200000
void filter_PWMs(int* mixer);
void PWMS_to_Aero(int* PWMs, int* aero); // <= javey: unused
void Aero_to_PWMS(int* PWMs, int* aero);
#endif /* _CONTROLLERS_H */
#include "conversion.h"
// takes a floating point percentage and converts to a
// receiver command in the range min_rx_cmd to max_rx_cmd
// if percentage is < 0 then returns a value less than
// center_rx_cmd but >= min_rx_cmd
// if percentage is > 0 then returns a value greater than
// center_rx_cmd but <= max_rx_cmd
// if percentage is = 0 then returns center_rx_cmd
// acceptable range of values for percentage: [-100, 100]
int map_to_rx_cmd(float percentage, int min_rx_cmd, int center_rx_cmd,
int max_rx_cmd)
{
//bounds checking
// imagine a human flying and the stick is minimum
if(percentage >= 100.0)
return max_rx_cmd;
//bounds checking
// imagine a human flying and the stick is minimum
if(percentage <= -100.0)
return min_rx_cmd;
// 0 percentage is center cmd
// imagine a human flying and not touching the stick
if(percentage == 0)
return center_rx_cmd;
// calculate and return a percentage of the max/min command
if(percentage < 0)
{
return center_rx_cmd + ((int) (percentage/100.0 *
((float) max_rx_cmd - center_rx_cmd)));
}
else
{
return center_rx_cmd + ((int) (percentage/100.0 * (
(float) center_rx_cmd - min_rx_cmd)));
}
return 0;
}
int convert_to_receiver_cmd(int var_to_convert, float max_var_to_convert, float min_var_to_convert, int center_receiver_cmd, int max_receiver_cmd, int min_receiver_cmd)
{
if(var_to_convert <= 0) {
int ret = ((int) ((float)(min_receiver_cmd - center_receiver_cmd))/min_var_to_convert * var_to_convert) + center_receiver_cmd;
if(ret < min_receiver_cmd)
ret = min_receiver_cmd;
return ret;
}
else {
int ret = ((int) ((float)(max_receiver_cmd - center_receiver_cmd))/max_var_to_convert * var_to_convert) + center_receiver_cmd;
if(ret > max_receiver_cmd)
ret = max_receiver_cmd;
return ret;
}
return 0;
}
#ifndef _CONVERSION_H
#define _CONVERSION_H
int convert_to_receiver_cmd(int var_to_convert, float max_var_to_convert, float min_var_to_convert, int center_receiver_cmd, int max_receiver_cmd, int min_receiver_cmd);
int map_to_rx_cmd(float percentage, int min_rx_cmd, int center_rx_cmd, int max_rx_cmd);
#endif /* _CONVERSION_H */
#ifndef _GAM_H
#define _GAM_H
#include "xbasic_types.h"
//Gyro, accelerometer, and magnetometer data structure
//Used for reading an instance of the sensor data
typedef struct {
// GYRO
//Xint16 raw_gyro_x, raw_gyro_y, raw_gyro_z;
float gyro_xVel_p; // In degrees per second
float gyro_yVel_q;
float gyro_zVel_r;
// ACCELEROMETER
//Xint16 raw_accel_x, raw_accel_y, raw_accel_z;
float accel_x; //In g
float accel_y;
float accel_z;
float accel_roll;
float accel_pitch;
// MAG
//Xint16 raw_mag_x, raw_mag_y, raw_mag_z;
float heading; // In degrees
float mag_x; //Magnetic north: ~50 uT
float mag_y;
float mag_z;
}gam_t;
#endif /* _GAM_H */
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment