
COM S 327, Spring 2019
Programming Project 1.03

Path Finding

So far, we’ve got this lovely dungeon. And we can. . . save and restore it. And, you know. . . look at it.
And that’s about it. Nice for mom’s fridge, but otherwise kind of boring.
Once you have monsters (next week), they (at least the smart ones) will need to find a path to the

player through the dungeon. To find that path, you’ll need to implement a path-finding algorithm. We’re
going to have some monsters that can tunnel through walls and others that can only move through open
space, so we’ll actually need two slightly different pathfinding algorithms. In both cases we’ll use Dijkstra’s
Algorithm, treating each cell in the dungeon as a node in a graph with (up to) 8-way connectivity (diagonal
movement is allowed!). For the non-tunneling monsters, we’ll give a weight of 1 for floor (stairs are treated
like floor for the purposes of pathfinding and character movement) and ignore wall cells (i.e., don’t try to
find paths through walls; this actually degenerates to BFS, and you’re welcome to use that, but we will not
require you to implement two different–if very similar–algorithms for this assignment). For the tunnelers,
we’ll have to use weights based on the hardness; cells with a hardness of 0 have a weight of 1, and cells with
hardnesses in the ranges [1, 254] have weights of 1 + (hardness / 85). A hardness of 255 has infinite weight.
We don’t have to assign a value to this. Instead, we simply do not put it in the queue.

A naı̈ve implementation will call pathfinding for every monster in the dungeon, but in practice, every
monster is trying to get to the same place, so rather than calculating paths from the monsters to the player
character (PC), we can instead calculate the distance from the PC to every point in the dungeon, and this
only needs to be updated when the PC moves or the dungeon changes. Each monster will choose to move to
the neighboring cell with the lowest distance to PC. This is gradient descent; the monsters move “downhill”.
Unless the monster is already collocated with the PC, there is always at least one cell with a shorter distance
than its current cell. In the case of multiple downhill cells having the same distance, the monster may choose
any one of them.

Dijkstra’s Algorithm is described here: http://en.wikipedia.org/wiki/Dijkstra%27s algorithm. Scroll
down to find the pseudocode under “Using a priority queue”. Obviously, you’ll need a priority queue,
one with a decrease priority operation. You may use the Fibonacci queue that I provided with my solution to
1.01, or you may implement (or use a properly-attributed third party implementation of) any other priority
queue you like.

My corridor building code uses Dijkstra’s algorithm, so you may start with that (it won’t require much
modification) or start from scratch.

To test your code, select a random floor point in the dungeon for your PC, which you will render with an
‘@’. Render your dungeon with the PC. Then render your non-tunneling monster distance map, still marking
the PC with ‘@’ and marking distances using the last digit of the distance (i.e., distance mod 10) from the
PC as calculated by your pathfinding algorithm (see image). Repeat for the tunneling monster distance map.
Note that your distance maps will be integers from zero to some max value. We are only displaying them
using the values above, not storing them that way.

Your submission, when run, should generate a dungeon, calculate all distance maps, render all three
views of the dungeon (the “standard” view and the two distance maps), and exit.

All code is to be written in C.

http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm


6555
6544 10987655
6543 10987654

321098765432109876543
3210 32

665432109876543211 211
55543 3222 0
44444 3333 9
33333 4444 8
32222 5555 7 766666
32111 654321 765555
32100 98765432109876543210987654321098765444
32109 9876 654321 8765 765433
3210987654321098765432109877 8766 2

09888 8777 21112
09888 21@12
09877 21112
09876 987654322222
09876543210987654321098765432109

Here is an example distance map for non-tunneling monsters. The PC is near the lower right corner. Only
the last digit of the distance is shown. You can get actual distances by counting the zeros along a path (sort
of like reading elevations on a topographical map). Keep in mind that if you follow a non-optimal path in a
circuit, you may have to count backwards! Pay attention to the gradients. Note that I don’t have a solution
for our dungeons, yet, so I’ve produced this map manually. It’s highly possible I’ve made an error in here
somewhere, but I believe it’s correct.


