
COM S 327, Spring 2019
Programming Project 1.07

I’ve combined two previous assignments into one, here. Formerly, students implemented monster parsing
one week, then item parsing the next. The two assignments are very similar, to an extent that most students
found the second assignment uninstructive. I don’t want to bore you with what is essentially a repeated
assignment, and by cutting a week out of the old assignments, we can add a week of new functionality at the
end.

This assignment specification combines monster and item parsing into one document. Your assignment
is to implement the “Parsing Monster Definitions” assignment, below.

You may, optionally, implement the “Parsing Item Definitions” assignment, as well. I will implement
both, and for students not using my code, I will release my solution in a standalone form so that you will not
have to implement item parsing if you don’t want to or don’t have time. You will, however, have to have an
item parsing solution, whether you write your own or use mine, as next week’s assignment will depend on
it.

Parsing Monster Definitions

We’ve been randomly generating our NPCs, and while that’s not a totally unworkable way to build a real
game, it does have some major disadvantages; for instance, it prevents the player from recognizing monsters
and knowing, from previous encounters, what to expect from them. As Roguelikes are primarily tactics
games, knowing what to expect is essential to success. We’ve also been very simplistic, with no concept of
hitpoints, attack strength, defensive abilities, etc. It’s time to increase the complexity of our NPCs, and later
we’ll work on the PC.

To create more complex NPCs, we could hard code all of the monsters we want. That’s as simple as
defining an NPC class or structure, creating an array of them, one for each monster, and assigning values to
the fields. Problem solved. And if we think of an interesting, new monster that we want to add to the game?
We’ll need to increase the size of the array, set the fields in the new slot, and recompile. So, essentially, only
a developer can do it. A more flexible method will use a text file in which monster types are defined; the
game only needs to know how to parse it, and we can change, add, and remove all the monsters we want
without ever recompiling.

We’re thinking about defining an editable file format to describe NPCs, so, in fact, we’re thinking about
defining a (simple, formal) language and implementing a parser for it. Language design and parsing in the
general sense are beyond the scope of this course, but we already know enough to be able to scan tokens
from the input with clearly defined delimiters, so we’ll design our language so that it is simple enough that
we can easily parse it with the tools we have. Students who are interested in implementing more complex
monster definition files with more complex parsing requirements should look into lex, yacc, and recursive
descent. Furthermore, you are welcome to use lex and yacc in this assignment, if you’re looking to learn
some other useful tools.

What characteristics do we want our monsters to have? So far, they have a symbol, a speed, and perhaps
telepathy, intelligence, tunneling ability, and eraticism. These provide a good start. Let’s add a color, a
name, a description, hitpoints (health), attack damage, and a general “abilities” field, where intelligence and
telepathy are just two possibilities. Given time we’d add other things, including types of attacks: dragons
can breathe fire, basilisks can paralyze with a look, and sorcerers can cast spells.

Many of these things are numeric. We could provide a mean and a standard deviation, then roll for a
value from a Gaussian. But this is a role-playing game. Role-playing games traditionally use dice, and we’re
going to stick with tradition on this. We’ll specify our values with the format:

<base> + <dice> d <sides>

where <base> is a constant offset (maybe zero), <dice> is the number of dice to roll (also maybe zero),
and <sides> is the number of sides on each of those dice. So a numerical specification of 9+3d8 means to
roll a number with a minimum value of 12, a maximum value of 33, and an expected value of 22.5. The
distribution of rolls for a 9+3d8 looks like this:

Roll Probability Cumulative Probability
12 0.2 0.2
13 0.6 0.8
14 1.2 2.0
15 2.0 3.9
16 2.9 6.8
17 4.1 10.9
18 5.5 16.4
19 7.0 23.4
20 8.2 31.6
21 9.0 40.6
22 9.4 50.0
23 9.4 59.4
24 9.0 68.4
25 8.2 76.6
26 7.0 83.6
27 5.5 89.1
28 4.1 93.2
29 2.9 96.1
30 2.0 98.0
31 1.2 99.2
32 0.6 99.8
33 0.2 100.0

Store these as three values, i.e., base, dice, and sides. They will be used later to instantiate a dice class
object.

Let’s define some keywords for all of the parameters of our monsters. In the table below, numerical
means a descriptor for dice as defined above. If you want a constant, then you have zero dice, e.g., 12+0d1.

Parameter Keyword Description
Name NAME A name to describe the monster, for example, a “slime”, an “ama-

zon”, a “wyvern”, or “Sauron”. Terminated by a newline
Description DESC A textual description of the monster. Beginning on the next line

after the keyword, terminated by a period on a line by itself, and
limited to a width of 77 characters (the newline must appear at or
before byte 78).

Color COLOR A list of space-delineated color name keywords (see color infor-
mation below), used to color the monster in the dungeon (not im-
plemented yet, but curses makes this easy), followed by a newline.

Speed SPEED A numerical value (dice, as defined above) describing the speed of
a monster, followed by a newline

Abilities ABIL List of space-delineated abilities keywords. For now, we’ve got
SMART, for smart monsters, TELE, for telepathic monsters, TUNNEL
for monsters that can tunnel through rock, ERRATIC for erratic
monsters, and let’s add PASS, for non-corporeal monsters, like
ghosts, that can pass through matter without damaging it, PICKUP,
for monsters that can pick items up from the floor, DESTROY, for
monsters that can destroy items on the floor, UNIQ for monsters
that are unique (there can be only one of each unique monster in
any dungeon, and once it is killed, it cannot be created again), and
BOSS (to designate a monster as a “final boss”, the killing of which
ends the game), followed by a newline.

Hitpoints HP A numerical value describing the amount of damage a monster can
take, followed by a newline.

Attack Damage DAM A numerical value describing the amount of damage a monster can
inflict per attack, followed by a newline.

Symbol SYMB A single character giving the in-game, graphical representation of
the monster.

Rarity RRTY An integer between 1 and 100, inclusive, giving the probability of
generating this monster when it is selected (in 1.08).

Ncurses allows us to display in color, assuming it’s supported by the terminal. We’ll define the following
colors: RED, GREEN, BLUE, CYAN, YELLOW, MAGENTA, WHITE, BLACK. When we start loading (as opposed to
simply reading their descriptions in from a file) these new monsters, we’ll also start rendering them in color.

Let’s also add some keywords to start and end each entry:

BEGIN MONSTER

on a line by itself to mark the start of a new NPC, and

END

on a line by itself to mark the end.
All fields must be present. No field may appear more than once for a given monster. There is no required

field order. On any failure (parsing error, duplicate field, missing field, etc.), the monster should be discarded
and parsing should continue with the next monster in the file (if it exists). In other words, any parser error
discards the current monster, and the parser scans for the next occurrence of START MONSTER and continues
processing from there.

We’ll also add some metadata to the start of the file for versioning:

RLG327 MONSTER DESCRIPTION 1

should be the first line. If it fails to match, you may terminate the program.
We will store our monster descriptions in the same directory where we have been storing our dungeon

save files, $HOME/.rlg327, in a file named monster desc.txt.
In order for the TAs to verify that your parser works, we’ll need you to print out the monster definitions

after reading them. We’ll print the values of every field, one per line (the description may be printed on
several lines), in the order they are given in the above table, with a blank line between each monster.

Your parser should be implemented in C++. Since we’re concerned about correctly parsing your monster
description files and not about the mechanics of the game, I suggest that you modify main to read the monster
description files, print the test output, and exit, without ever entering the game proper.

Note that these descriptions are essentially templates for monsters, not instances of actual NPCs. Later,
when we use these monster descriptions, we’ll treat them as templates to generate NPCs. So when thinking
about how to represent these internally, you might consider creating a monster description class that can
return instances of npc from a generate method. An instance of an NPC will still have dice for damage
abilities (each attack is a roll), but max hitpoints and speed will be fixed based on rolls when the monster is
generated.

An example of a monster description file with two entries is listed on the next page, and on the page
following that, the expected output of your program on this file. I will post a larger monster descriptions file
to blackboard, as well as start a thread on blackboard for you to post your own monster descriptions.

RLG327 MONSTER DESCRIPTION 1

BEGIN MONSTER
NAME Junior Barbarian
SYMB p
COLOR BLUE
DESC
This is a junior barbarian. He--or is it she? You can't tell for sure--
looks like... it should still be in barbarian school. The barbarians are
putting them in the dungeons young these days. It's wearing dirty, tattered
cloth armor and wielding a wooden sword. You have a hard time feeling
intimidated.
.
SPEED 7+1d4
DAM 0+1d4
HP 12+2d6
RRTY 100
ABIL SMART
END

BEGIN MONSTER
NAME Amazon Lich Queen
DESC
She was a powerful Amazon warrior in life. Death at the hands of the undead
hordes was followed by her resurrection through dark, necromantic arts. Her
power in life didn't approach her undead glory. Clad in night-black robes
that don't move in the wind, her incorporeal form commands the power of death
over life. You may just be her next victim. You fear for your soul as you
quake before her malevolent majesty.
.
SYMB p
COLOR BLACK
ABIL SMART PASS
DAM 30+5d9
HP 2999+1d1001
SPEED 10+10d2
RRTY 20
END

Junior Barbarian
This is a junior barbarian. He--or is it she? You can't tell for sure--
looks like... it should still be in barbarian school. The barbarians are
putting them in the dungeons young these days. It's wearing dirty, tattered
cloth armor and wielding a wooden sword. You have a hard time feeling
intimidated.
p
BLUE
7+1d4
SMART
12+2d6
0+1d4
100

Amazon Lich Queen
She was a powerful Amazon warrior in life. Death at the hands of the undead
hordes was followed by her resurrection through dark, necromantic arts. Her
power in life didn't approach her undead glory. Clad in night-black robes
that don't move in the wind, her incorporeal form commands the power of death
over life. You may just be her next victim. You fear for your soul as you
quake before her malevolent majesty.
p
BLACK
10+10d2
SMART PASS
2999+1d1001
30+5d9
20

Parsing Item Definitions
Optional! You don’t have to do this part!
What fun is crawling through a monster-laden dungeon if all of the monsters are more powerful than

you? To even out the odds, we’d like to add attributes and abilities that increase with level to the PC, but for
now, let’s allow the PC to pick up the leavings of adventurers past. Whenever we generate a new dungeon
level, we’ll also generate a few objects and scatter them around the dungeon floor. And when we kill a
monster, that monster may drop items. We’ll start by defining the attributes that we want in our gear and
define a file format to specify them. Next week we’ll start using them (and the monsters that we defined last
week) in our dungeons.

Obviously a breast plate and a spiked mace should have different characteristics, so we might define
a class hierarchy for all items; however, there no reason that armor cannot inflict damage on NPCs or
that weapons cannot grant defensive bonuses or emit light. Given this, it’s premature and probably overly
complex to design a polymorphic class structure for dungeon objects (though you are welcome to if either
you disagree or you just want to). We can simplify things by defining only one class and deciding which
fields to use based on the type of object. Before we start working out the details of objects, let’s figure out
what kind of equipment our PC will use.

A character can wield a weapon in hand, a shield (or off-hand weapon, or maybe a two-handed weapon)
in the other hand, a bow worn on back, helmet on head, armor over body, cloak over shoulders, gloves
on hands, boots on feet, rings on fingers (let’s hold off on the bells on toes for now), maybe an amulet
or necklace around the neck, and a light source, which gives us between 11 and 20 pieces of equipment,
depending on the number of rings. In practice, in games of this type, rings tend to be fairly powerful and
characters are restricted to one or two of them, so let’s go with two. Below is a table listing our item types
and giving some keywords that we’ll use in the file. We’ll also add some item types to this that aren’t gear.

Item type Keyword Equipment
Main Weapon WEAPON 3

Shield, off-hand weapon, or two-handed weapon OFFHAND 3

Bow, crossbow, sling RANGED 3

Body armor or clothes ARMOR 3

Hat, helmet, or crown HELMET 3

Cloak CLOAK 3

Gloves or gauntlets GLOVES 3

Shoes, boots, or greaves BOOTS 3

Rings RING 3

Amulets, necklaces, or broaches AMULET 3

Torch, lantern, or other light source LIGHT 3

Scrolls, parchment, paper SCROLL 7

Books BOOK 7

Flasks, bottles, cups, maybe with something in them FLASK 7

Precious metals or gems, Dollars, Pounds, Euros, Kronor, RMB,
or Rupees (we’re international!)

GOLD 7

Arrow, bolts, pebbles AMMUNITION 7

Food or drink FOOD 7

Wands, staves, magical implements WAND 7

Chests, safes, bags CONTAINER 7

In order to create a two-handed weapon, we’ll use both the WEAPON and OFFHAND keywords, so a bitfield
would be a good way to store this internally.

Just as we did for monsters, we’ll define a set of objects attributes:

http://en.wikipedia.org/wiki/Ride_a_cock_horse_to_Banbury_Cross

Parameter Keyword Description
Name NAME A name to describe the object, for instance, “a pair of leather moc-

casins” or “a plain gold ring”.
Description DESC A textual description of the item, beginning on the next line after

the keyword, terminated by a period on a line by itself, and limited
to a width of 77 characters.

Type TYPE Item type keyword (above).
Color COLOR A color name keyword describing the color used to render the ob-

ject in the dungeon. Color name keywords are as defined in as-
signment 1.05.

Hit bonus HIT A numerical offensive bonus that is applied to the probability of
the wielder hitting an opponent.

Damage bonus DAM A numerical offensive bonus that is applied to the damage inflicted
by a successful attack.

Dodge Bonus DODGE A numerical defensive bonus that reduces a PC’s probability of
being hit by an NPC attack.

Defense bonus DEF A numerical defensive bonus that reduces the damage incurred by
a successful attack from an NPC.

Weight WEIGHT The object’s numerical weight in Units (a “unit” is something that
people use to measure things).

Speed bonus SPEED A numerical bonus to PC speed when equipping the object.
Special Attribute ATTR A numerical value specifying the value of any special

characteristics—if any—an object may have, for instance the ca-
pacity of a container or the radius of a light source.

Value VAL A value in Pesos de Ocho.
Artifact status ART The string “TRUE” or “FALSE”. Exactly zero or one instances of

each artifact object may exist in the game.
Rarity RRTY An integer in the range 1 to 100, inclusive, giving the probability

of generating this object when selected (in 1.08).

In a similar fashion to our monster description files, we’ll start the file with metadata (some semantics
markers and a file version):

RLG327 OBJECT DESCRIPTION 1

And each entry will start with the line

BEGIN OBJECT

and end with the line

END

We will store our object descriptions in the same directory where we have been storing our dungeon
save files and monster descriptions, $HOME/.rlg327, in a file named object desc.txt.

In order for the TAs to verify that your parser works, we’ll need you to print out the object definitions
after reading them. We’ll print the values of every field, one per line (the description may be printed on
several lines), in the order they are given in the above table, with a blank line between each object.

Your parser should be implemented in C++. Since we’re concerned about correctly parsing your object
description files and not about the mechanics of the game, I suggest that you modify main to read the object
description files, print the test output, and exit, without ever entering the game proper (just like we did last
week).

Note that these descriptions are essentially templates for objects, not instances of actual objects. Next
week, we’ll use these object descriptions and last week’s monster descriptions, generate objects and NPCs
in the dungeon. So when thinking about how to represent these internally, keep that in mind. And just like
last week, we are not actually generating instances of these things yet, just parsing them and printing them
out for verification.

Beginning on the following page, we present an example object description file with several objects. We
have not produced output here, because that follows directly from last weeks work, so we’re confident that
you can figure it out.

RLG327 OBJECT DESCRIPTION 1

BEGIN OBJECT
NAME a NERF(R) dagger
TYPE WEAPON
COLOR MAGENTA
WEIGHT 1+0d1
HIT 0+0d1
DAM 0+0d1
ATTR 0+0d1
VAL 9+1d6
DODGE 10+0d1
DEF 0+0d1
SPEED 0+1d0
ART FALSE
RRTY 100
DESC
This is a totally wicked looking dagger. It's got awesome barbs on the back
of the blade, a compass on the hilt, and myriad other embelishments that
serve no functional purpose. You could totally be a deadly assassin with a
sweet blade like this. Since it's so light, it won't encumber you. It's
made out of polyurethane foam.
.
END

BEGIN OBJECT
NAME a vorpal blade
DESC
One, two! One, two! And through and through!
It goes snicker-snack.
.
TYPE WEAPON
COLOR RED
WEIGHT 15+0d1
HIT 12+3d4
ATTR 0+0d1
VAL 198+2d51
DAM 12+3d4
DODGE 0+0d1
DEF 0+0d1
SPEED 0+1d0
ART TRUE
RRTY 5
END

BEGIN OBJECT
NAME a prom dress
HIT 0+2d3
DAM 0+2d3
DODGE 0+0d1
SPEED -5+0d1
ATTR 0+0d1
VAL 449+0d1
DEF 0+0d1
DESC
This dress is totes fab! It's off-the-shoulder with an A-line waste, sequins,
and lavender chiffon. It fits tight to mid-calf and you totally can't take
full steps in it, but who cares? You'll be the hit of the party as long as
Shirley doesn't show up wearing the same thing again.
.
TYPE ARMOR
COLOR MAGENTA
WEIGHT 0+2d2
ART FALSE
RRTY 40
END

BEGIN OBJECT
NAME a chainmail coif
WEIGHT 8+0d1
HIT 0+0d1
DAM 0+0d1
ATTR 0+0d1
DODGE 0+0d1
VAL 48+2d11
DEF 10+2d6
SPEED 0+1d0
DESC
A heavy chainmail head covering.
.
TYPE HELMET
COLOR BLACK
ART FALSE
RRTY 75
END

BEGIN OBJECT
NAME the Aegis
DESC
A very high-quality shield. Nobody knows what it looks like, except for

maybe--now--you, but you're not telling. The back side is inscribed with the
words: "If found, please return to Zeus, Mount Olympus".
.
TYPE OFFHAND
WEIGHT 3+0d1
HIT 0+0d1
DAM 0+0d1
VAL 17000+0d1
DODGE 20+2d8
ATTR 0+0d1
DEF 20+3d8
SPEED 10+1d0
COLOR YELLOW
ART TRUE
RRTY 30
END

BEGIN OBJECT
NAME a cloak of invisibility
TYPE CLOAK
VAL 10000+5d1000
DESC
One of the Deathly Hallows, this cloak grants the wearer invisibility. Last
know to be the property of the Boy Who Lived.
.
WEIGHT 1+0d1
DODGE 24+5d4
DEF 0+0d1
HIT 0+0d1
ATTR 0+0d1
DAM 0+0d1
SPEED 0+1d0
COLOR CYAN
ART FALSE
RRTY 40
END

BEGIN OBJECT
NAME the One Ring
TYPE RING
WEIGHT 1+0d1
COLOR YELLOW
DODGE 50+6d8
VAL 1000000+2d1000000
DEF 50+6d8

ATTR 0+0d1
HIT 10+2d5
DAM 10+2d5
SPEED 12+1d0
ART TRUE
RRTY 2
DESC
The One Ring to rule them all... and in the darkness bind them. Created by
Sauron as a tool in his quest to dominate Middle Earth. It draws the dark
sorcerer's eye upon its wearer.
.
END

BEGIN OBJECT
NAME a torch
TYPE LIGHT
WEIGHT 2+1d2
COLOR BLACK
DODGE 0+0d1
VAL 0+1d3
DAM 0+0d1
DEF 0+0d1
HIT 0+0d1
SPEED 0+0d1
DESC
A short wooden stick topped with an oil-soaked cloth, perfect for lighting
your way through the dungeon.
.
ATTR 3+2d3
ART FALSE
RRTY 90
END

BEGIN OBJECT
NAME a Wicked Lasers(R) Torch
TYPE LIGHT
WEIGHT 1+1d2
COLOR BLACK
DODGE 0+0d1
VAL 199+0d1
DAM 0+0d1
DEF 0+0d1
HIT 0+0d1
SPEED 0+0d1
DESC

From the makers of the world's most refined lasers, comes the ultimate in
handheld flashlights. The Flashtorch is a compact, portable searchlight that
is capable of producing an incredible 4100 lumens of intense white light. Use
this power to guide your way home, light a fire, or even fry an egg!
.
ATTR 5+3d4
ART FALSE
RRTY 30
END

