

MicroCART 2016-2017
Project Plan

Group:​ ​May1716

Team Members

Brendan Bartels – Controls Software

Kristopher Burney – Ground Station Key Concept Holder

Joseph Bush – Quadcopter Software Key Concept Holder

Jacob Drahos – Team Webmaster

Eric Middleton – Hardware Maintainer

Tara Mina – Team Communications Leader

Andrew Snawerdt – Controls Systems Key Concept Holder

David Wehr – Team Leader

Advisors
Dr. Phillip Jones

Dr. Nicola Elia

Team Email:​ ​ may1716@iastate.edu

Team Website:​ ​ http://may1716.sd.ece.iastate.edu

Revision Date:​ ​Friday, October 14th 2016
Version:​ ​1.0

mailto:may1716@iastate.edu
http://may1716.sd.ece.iastate.edu/
http://may1716.sd.ece.iastate.edu/
http://may1716.sd.ece.iastate.edu/
http://may1716.sd.ece.iastate.edu/

Contents

1 Introduction 5

1.1 Project Statement 5

1.2 Purpose 5

1.3 Goals 6

2 Deliverables 7

2.1 Current Quadcopter Software 7

2.1.1 Autonomous Flight 7

2.1.2 Improved Communication System 7

2.1.3 Support Flying without Ground Station 7

2.1.4 LiDAR Altitude Control 7

2.1.5 Support GPS Navigation 8

2.1.6 Running Linux on second core 8

2.2 Ground Station 8

2.2.1 Real Time Communication 8

2.2.2 Back End 9

2.2.3 Command Line Interface 9

2.2.4 Graphical User Interface 9

2.3 Hardware Improvements 9

2.3.1 Rewiring the Board 9

2.3.2 Battery Regulator 9

2.4 WiFi Communication 10

2.5 Increasing Modularity 10

2.6 Documentation 10

2.7 PID Controller Design and Physical Model of the Quadcopter 10

3 Design 11

3.1 Previous Work and Literature Review 11

3.2 System Design 11

3.2.1 Communication System 11

3.2.2 Control System 12

1

3.2.3 Actuation 14

3.2.4 Sensor System 14

3.3 Quadcopter Software 14

3.3.1 Autonomous Flight 14

3.3.2 Improved Communication System 14

3.3.3 Support Flying without Ground Station 15

3.3.4 LiDAR Altitude Control 15

3.3.5 Support GPS Navigation 15

3.3.6 Running Linux on second core 15

3.3 WiFi Communication 16

3.4 Ground Station 16

3.4.1 Backend 16

3.4.2 Command Line Interface 16

3.4.3 GUI 16

4 Test Plan 17

4.1 Assessment of Proposed Solution 17

4.1.1 Current Quadcopter Software 17

4.1.2 Ground Station 17

4.1.3 Hardware Improvements 17

4.1.4 WiFi Communication 17

4.1.5 Increasing Modularity 17

4.1.6 Documentation 17

4.2 Validation and Acceptance Test 18

4.2.1 Current Quadcopter Software 18

4.2.2 Ground Station 18

4.2.3 Hardware Improvements 18

4.2.4 WiFi Communication 18

4.2.5 Increasing Modularity 18

4.2.6 Documentation 19

4.2.7 PID Controller Design and Physical Model of the Quadcopter 19

2

5 Design Requirements and Specifications 20

5.1 Functional Requirements 20

5.1.1 Quadcopter Software Functional Requirements 20

5.1.2 Ground Station Functional Requirements 20

5.1.3 Voltage Regulator Requirements 20

5.1.4 Wifi Module Functional Requirements 20

5.1.5 Control System Functional Requirements 20

5.2 Non-functional Requirements 21

5.2.1 Current Quadcopter Software Non-functional Requirements 21

5.2.2 Ground Station Non-Functional Requirements 21

5.2.3 Voltage Regulator Non-Functional Requirements 21

5.2.4 Wifi Module Non-Functional Requirements 21

5.2.5 Control System Non-functional Requirements 21

6 Challenges 22

6.1 Risks 22

6.2 Feasibility Assessment 22

6.3 Cost Considerations 22

7 Timeline 23

7.1 First Semester 23

7.2 Second Semester 24

8 Conclusions 26

9 References 27

3

Figures

Figure 1:​ MicroCART ​Quadcopter
.

.
5

Figure 2: Zync-7000 SoC on Zybo Board
.

.
8

Figure 3: High-Level System Block Diagram
.

.
11

Figure 4: Communication System Block Diagram . .
.

.
12

Figure 5: PID Controller Block Diagram
.

.
12

Figure 6: Nested Loop PID Architecture
.

.
13

Figure 7: Nested Loop PID Architecture with Signal Mixer .
14
Figure 8: Actuation System Block Diagram .
15
Figure 9: Sensor System Block Diagram .
16
Figure 10: Fall Semester Timeline .
27
Figure 11: Spring Semester Timeline .
.28

Tables

Table 1: Variable Definitions
. .

 .
13

Table 2: Cost Considerations
.

.
25

4

1 Introduction

The MicroCART (Micro-processor Controlled Aerial Robotics Team) senior design project has been
passed down from team to team since 2006, developing a quadcopter for research purposes. Up to
now, the MicroCART quadcopter (​Figure 1​) has been flying in the Distributed Sensing and Decision
Making Laboratory, using the twelve-camera infrared tracking system for navigation. The quadcopter
has been gradually improved by the work of each senior design team, and currently has much of the
hardware necessary to accomplish our goals for this academic year.

Figure 1: MicroCART Quadcopter

1.1 Project Statement
By building on the current system, our goal for MicroCART is to create a modular platform for
research in controls and embedded systems. In addition to making the quadcopter system more
modular, we plan to increase its abilities and functions, including developing the ability to fly
autonomously through a sequence of user-specified waypoints and to go outdoors, without the help
of the twelve-camera infrared tracking system available in lab.

1.2 Purpose
By creating a modular platform, we wish for any controls student to be able to design their own
controller, including new types of controllers, and test it with our system easily. In addition, we hope
to develop a system that can execute more impressive abilities, including autonomous flight, flying
outdoors using GPS navigation, and also potentially performing advanced flight maneuvers. Having

5

these more impressive capabilities to demonstrate will help excite new students, give them a friendly,
hands-on platform to learn about controllers, and better represent the talents of our department to
visitors, other interested students and faculty members. Furthermore, if we develop a platform that
works well and is easy to use, this system will likely be used and added into the second semester
course for controls systems, EE 476, where it can help students gain a more intuitive understanding of
PID controllers and give them a platform to test their designs.

1.3 Goals
We plan to design several PID controllers for each direction of movement. Our plan will differ from
approaches used in the past, deriving the controller from a systematically developed mathematical
model of quadrotor dynamics, in accordance with the approach developed in a thesis written by one
of the advising graduate students. Thus, we will initially conduct system identification of our
quadcopter by taking measurements and performing data analysis, and afterwards utilize these
parameters to characterize and implement the linear control systems necessary for controlling the
movement of the quadcopter. We will also create a user interface that can be used to select
waypoints which the quadcopter will follow while in autonomous flight. Eventually, we also want the
quadcopter to be able to fly outdoors, without the infrared camera tracking system in the lab, by
using GPS for navigation instead and a LIDAR sensor to detect the presence of obstacles located
underneath the quadcopter.

6

2 Deliverables

The quadcopter system can be compartmentalized into three major subsystems or sub-projects: the
development of the quadcopter software, the ground station, and the PID controls systems on the
quadcopter. We will need to work on each of these components to transform it to a particular, useful
state which will be essential to meet our objectives. In addition, there are overall, all-encompassing
aspects of the project that we need to address, including improving on the modularity of the system.

2.1 Current Quadcopter Software

2.1.1 Autonomous Flight

The quadcopter has an autonomous mode in which it attempts to remain at a fixed point in space
using the infrared camera tracking system in the lab. It is currently unstable and unreliable. Our team
plans on updating the controllers to improve the performance of this autonomous ability. Once this
improvement is complete, we will add the ability to receive waypoints from the ground station and fly
towards the given point, regardless of the current location. All of this will be within the confines of the
infrared tracking system in the Coover 3050 lab.

2.1.2 Improved Communication System

Communication between the ground station and quadcopter is currently done using bluetooth, which
limits the range, bandwidth, and latency of our communication. On the quadcopter, we will replace
the bluetooth receiver with a WiFi receiver, which will improve all three of the relevant metrics. Our
communication system will support both low-latency transfer of real-time data over UDP, as well as
reliable data transfer for TCP. This will require us to update the command structure on the
quadcopter to differentiate between UDP and TCP.

2.1.3 Support Flying without Ground Station

The current quadcopter software requires that the ground station be connected in order for any flight
to start, which is unnecessary in manual and GPS-based autonomous flight modes that don’t require
data from the camera system. We plan to remove this requirement for any flight mode not requiring
data from the camera system. We will also add a watchdog timer that will monitor the
communication link in modes requiring camera data— such as indoor autonomous mode— that will
force the system into manual mode if communication with the base station is lost.

2.1.4 LiDAR Altitude Control

Once we have basic stabilized flight using the camera system, we will move on to implement a LiDAR
system which will allow autonomous control of altitude. This system will involve a single LiDAR
pointing downward so that we can measure the distance to the ground. The LiDAR distance reading
can then be added into the PID control loop as the Z position.

2.1.5 Support GPS Navigation

The quadcopter currently receives position information for the camera system in 3050, which limits
our autonomous capabilities to that specific area. Once we have basic stabilized flight using the
camera system, and LiDAR control for altitude, we plan to add a GPS module. With this GPS module

7

we can add the ability to navigate autonomously outside of the camera system. Using the GPS for the
horizontal position and LIDAR for Z position the quad will be able to navigate outside.

2.1.6 Running Linux on second core

The Zync-7000 SoC, as shown in ​Figure 2 ​below, runs the software on the quadcopter, and it contains
two ARM processor cores. Currently, all of the quadcopter software runs on only one of the cores,
while the other core is unused. To better support research, we will configure the unused core to run
linux, which will expose higher level functionality to the programmer. We will also create a set of
libraries that will allow programs to communicate with the real-time control program running on the
other core. This will allow researchers to use higher-level functionality, such as the computer vision
library OpenCV, on the quadcopter without much effort.

Figure 2: Zync-7000 SoC on Zybo Board

2.2 Ground Station

2.2.1 Real Time Communication

The current system has a limited amount of communication between the quad and the ground
station. We want to have feedback from the quad at all times in order to verify that we are
performing the correct functions. The idea of real time control also refers to being able to log data at
all times. The current system can only log data during autonomous flight and that data is only sent to
the ground station at the end of the flight. We will have the ability to log data while in any flight
mode, and have that data sent in real time to the ground station.

2.2.2 Back End

The back end will be designed to be a modular piece of the ground station. Any front end, whether it
be a command line interface or a graphical user interface, will connect to the back end via a socket

8

connection. This backend will accept input through this socket and forward it through another socket
connected to the quad. The back end will contain the raw connection between the ground station and
the quad. Responses from the quad will be forwarded through the back end as well. Any front end will
receive quad responses from the back end. If any closed-loop control loops are offloaded from the
quad to the base station, that control loop will be handled within the backend. Front ends will simply
send commands to adjust the parameters of that loop. The back end will have no facilities to push
data to the front-ends. Any front-end that wishes to retrieve data from the quad will poll the backend.

2.2.3 Command Line Interface

A command line interface (CLI) will provide the lowest level of front end ground station control. Users
will be able to set and request any relevant variables such as PID constants, pitch, roll and yaw set
points. This low level bare bones control will allow for a fast testing environment as well as the ability
to quickly check our understanding of the system as a whole. The CLI will connect via a socket to the
modular back end below it.

2.2.4 Graphical User Interface

The current GUI system has a rather limiting set of options. If connection issues occur between the
GUI and the quad, the only thing we know is that the connection was lost. While utilizing our new real
time control, we will implement a more descriptive error detection and recognition. Continuing with
the real time control, we will have constant updates of VRPN data as well as the current and desired
position of the quad. We intend for the GUI to extend the usability of the CLI and provide easier
control over high level aspects of the system.

HIgher level control will, in part, consist of easy point-to-point flight control by pointing and clicking
on a map inside of the GUI. This high level control will add an extreme amount of usability to the
quadcopter. High level control will also contain a visual representation of the quadcopter. Although it
is nice to have the normal numerical representation of the quadcopter, a visual representation will
better exhibit the connections between the input given to the quadcopter and the output produced
by the quadcopter. This visual representation will lessen the time it takes to understand the
controllers being implemented and serve as a sanity check to verify the correctness of the system.

2.3 Hardware Improvements

2.3.1 Rewiring the Quadcopter

Because this project has been passed down over many semesters with the focus of each team being
to add functionality to the quadcopter, the actual system hardware is currently in a non-ideal state.
Wire connections are not very secure, some wire connections are being held together with tape, and
some plugs are very tight. We intend to explore improvements to these issues.

2.3.2 Battery Regulation Board

Along with the rewiring of the quadcopter in general, we would like to design our own PCB which will
regulate the LiPO battery from 11.1V down to 5V at 3A to power the zybo board. The old system
utilized 4 AA batteries which was unnecessary weight. These batteries also could not be fully charged
as 4 AA batteries when fully charged is ~6V, when the board is powered off of 5V. This edition of our

9

own board will also allow us to add additional quality of life components, such as a current and
voltage monitor, motor cutoff switch, and breakout for all of the signal lines.

2.4 WiFi Communication
The system is currently configured to use Bluetooth as the communication method between the
ground station and the quadcopter. Bluetooth has high latency, which presents difficulties for
autonomous flight and running control algorithms on the base station. To improve this, we will
replace Bluetooth with WiFi, using an ESP8266 microcontroller with integrated WiFi. This will require
testing different configuration parameters to identify the fastest way to send data, as well as writing
code to implement the communication. Our goal is to be able to send data between the ground
station and the quadcopter with less than 5ms latency, which would result in 10ms round-trip, a small
enough delay to allow the entire control algorithm to execute on the ground station.

2.5 Increasing Modularity
Another important task our team needs to accomplish over the course of the next two semesters is to
increase the modularity of the system. This is important because to create a versatile, useful research
platform, the users should be able to interchange any element within the current system with another
that has the same input and output characteristics and the same general functionality. This capability
allows users to do very controlled tests and to perform experiments on multiple aspects of the
system, like the control system, the hardware being controlled, the data collection software program,
and many other sub-systems within these larger system blocks.

2.6 Documentation
In order for subsequent teams to continue the project effectively, critical procedures need to be
documented. This includes testing procedures for performing measurements for system identification
of the quadcopter, including the moment of inertia measurements about the pitch, roll, and yaw axes,
as well as the procedure for doing thrust constant and drag constant measurements. This procedure
will include a list of the equipment we used to perform the test, the steps we took to set up the test
and take measurements of the quadcopter, as well as including MATLAB scripts we used and ran to
perform data analysis on the measurements we collected in order to calculate a final value of that
particular measured parameter characterizing the quadcopter.

2.7 PID Controller Design and Physical Model of the Quadcopter
The quadcopter is stabilized by multiple proportional-integral-derivative (PID) controllers. Historically,
the coefficients of the PID controller have been determined through iterative optimization. However,
this approach has a couple of downsides. Since an iterative approach is technically a guess-and-check
method, it has little guarantee or assurance of yielding the most optimal system. It also only yields
appropriate parameters for the system on which the experimentation was performed. An alternative
and preferable approach is to characterize the quadcopter with a mathematical model and to then
derive the PID coefficients from that model. This approach has the advantage of having theoretical
assurances yielding an optimal controller design and also being general enough to apply to different
quadcopters that fit the same generic model.

10

3 Design

Below are the methods of approach our team came up with for our project. We plan to heavily
reference a graduate thesis written by Matthew Rich, who is currently one of the advising students for
MicroCART, when designing the control system for the quadcopter. We have also included some
systems-level block diagrams to help demonstrate where our plans lie with respect to the overall
structure of the quadcopter system.

3.1 Previous Work and Literature Review
Our project this semester for MicroCART will include the design of a PID controller that is based on a
mathematical model of the quadcopter, as derived and developed in Matt Rich’s thesis entitled
“Model Development, System Identification, and Control of a Quadrotor Helicopter.” This thesis was
specifically written for the purpose of developing a mathematical model that is simple enough that
undergraduate students can easily understand it, but that is also rigorous enough that a robust
control system can be designed to allow the quadcopter to maintain its current position and move to
a new position. Indeed, one of the core objectives of Matt Rich’s thesis was to “work cooperatively
with the MicroCART project.” See the complete citation of this document in the last section of this
report, entitled “References”.

3.2 System Design
The overall system is composed of four main components including the communication system,
control system, actuation, and sensor system as shown below in ​Figure 3​.

Figure 3: High-Level System Block Diagram

3.2.1 Communication System

The input to the control system from the communication system is dependant upon indoor or
outdoor flight. When flying in the distributed autonomous and networked control lab, the x, y, z
position of the quadcopter in space is determined from an OptiTrack camera system. This information
must then be passed to the quadcopter through the ground station. However, during outside flight,
the x, y position will be determined from an onboard GPS module, and the z position will be
determined with a LiDAR solution. This GPS module and LiDAR solution will be a part of the sensor
subsystem described in Section 3.2.4. Alongside this, the communication system will also provide any
user input from the command line interface (CLI), or controller during manual flight. This overall
communication process is represented below in ​Figure 4​.

11

Figure 4: Communication System Block Diagram

3.2.2 Control System

As described in Section 3.2.1 and Section 3.2.4, the control system inputs come from both the
communication system and sensor system. The entire control system is composed of multiple nested
PID controllers. The composition of a PID controller in a feedback loop is shown below in ​Figure 5​,
where r(t) is the set point value, and y(t) is the measured output. The primary components of the PID
controller include the K​p​ , K​i​ , and K​d​ terms, which denote the coefficients for proportional, integral,
and derivative terms, respectively. These coefficients will be determined using a mathematical model
of the quadcopter as described in the introduction of Section 3 and in Section 2.7.

Figure 5: PID Controller Block Diagram

The overall control system is broken down into four major subsections including the height controller
(z-axis), longitudinal controller (y-axis), lateral controller (x-axis), and a dedicated yaw controller. Most
of these controllers have nested controllers associated with them, as shown below in ​Figure 6​.

12

Figure 6: Nested Loop PID Architecture

This architecture allows us to not only control the body frame position of the quad, but it’s velocity as
well. When describing things in terms of body frame we are referring to the frame of reference of the
body of the quadcopter. This assumes that the origin of this axis lies at the center of mass of the body.
The variables utilized in Figure 6 are defined in ​Table 1​ below. Note that in the above image variables
denoted with the subscript “r” represent setpoint values.

Variable Definition

 Body frame x position

 Body frame y position

 Body frame z position

 Body frame roll angle

 Body frame pitch angle

 Body frame yaw angle

 Body frame roll angular velocity

13

 Body frame pitch angular velocity

 Body frame yaw angular velocity

 Throttle command

 Aileron command

 Elevator command

 Rudder command

Table 1: Variable Definitions

The last portion of the control system is converting the actual output commands of the controllers to
equivalent input commands for each of the four individual electronic speed controllers (ESCs). To do
this we utilize a signal mixer, defined by the following matrix:

This addition is shown in ​Figure 7 ​below:

Figure 7: Nested Loop PID Architecture with Signal Mixer

14

Note that P in the above system diagram represents the vector of all four ESC duty cycle percentages.

3.2.3 Actuation

The actual actuation, or mechanical movement of the quad occurs through the driving of each
motor/rotor combination. As stated previously the output from the control system provides ESC duty
cycle percentages, these percentages are used by the ESC to coordinate what voltage to apply to each
motor, represented as the vector V in ​Figure 8​. The ESCs themselves are powered from a 11.1V LiPO
battery (nominal voltage). From there the we can determine the actual angular velocity and
acceleration defined below:

where and represent the angular velocity and acceleration respectively. From this we areω α
able to derive the overall block diagram for the actuation of the quad.

Figure 8: Actuation System Block Diagram

3.2.4 Sensor System

The sensor system is composed of the MPU-9150 IMU (Inertial Measurement Unit) which provides
gyroscope and accelerometer data and is also an input to the control system. Alongside this, during
outside flight the OptiTrack camera system will be replaced with a dedicated GPS module and LiDAR
solution for determining the x, y, z position of the quadcopter. Data from the gyroscope and
accelerometer can be used to find the yaw, pitch, roll angles, and angular velocities. With this and
either the OptiTrack camera system or GPS module and LIDAR solution, we are able to provide all the
required inputs to the control system.

15

Figure 9: Sensor System Block Diagram

3.3 Quadcopter Software

3.3.1 Autonomous Flight

The stationary mode of the autonomous flight already has PID controllers configured. These just need
to be tuned correctly. The waypoint mode can be designed in a few possible ways, which we will
investigate. The most promising method is to incrementally adjust the <X,Y,Z> setpoint after each
iteration of the control loop. This will allow the controller to continually move towards the waypoint
without accumulating large errors, which would result in the quadcopter wildly overshooting the
waypoint.

3.3.2 Improved Communication System

In order to decrease the communication latency between the ground station and the quadcopter, we
will replace the bluetooth module with an Espressif ESP8266 microcontroller with integrated WiFi. To
allow for guaranteed and non-guaranteed delivery types, we will use the built-in TCP and UDP,
respectively, or build our own message verification built around UDP.

3.3.3 Support Flying without Ground Station

To liberate the quadcopter from its dependency on the ground station, we will need to refactor the
code to allow the quadcopter program loop to continue without waiting for the ground station. We
will first require that the quadcopter have this independence only when flying in manual mode, since
autonomous flight currently requires camera data for stabilization, which is currently given to the
quadcopter from the base station. Once the quadcopter can fly without the camera system, we will
add autonomous flight back in when not connected to ground station.

16

3.3.4 LiDAR Altitude Control

LiDAR will be used as an altitude sensor when the tracking data from the infrared camera system is
not available. The altitude provided by GPS is relative to sea level, which makes it impossible to
reliably land in autonomous mode. To get accurate altitude measurements, we will add a LiDAR-Lite
v3 from Sparkfun to the quadcopter. When the quadcopter is flying outside of the camera system, it
will use the LiDAR sensor for z-axis localization. When the quadcopter reaches altitudes out of range
for the LiDAR sensor, it will fall back on GPS altitude, which is sufficiently accurate at those heights.

3.3.5 Support GPS Navigation

To support GPS navigation, we will have to modify the quadcopter software to interpret locations
relative to the starting location. The current software receives absolute coordinates from the infrared
tracking system. To use relative locations, we will modify the software to obtain its location on
startup, and transform any new coordinates to the relative coordinate system. For GPS, we convert
coordinates to the local system, and then convert them to meters. We may also need to add a layer of
sensor fusion to combine the GPS and accelerometer data to provide more accurate location data at a
higher frequency than can be obtained from solely GPS.

3.3.6 Running Linux on second core

Running linux on the a single core of the Zync-7000 SoC is fully supported by the Xilinx toolchain, so
actually loading the operating system won’t require too much of our own design. The most
complicated part of this deliverable is creating the libraries that will simplify communication between
the linux core and the real-time control core.

At the lowest level, the IPC (inter-processor communication) system will memory map a shared region
of memory on both processors that will be used for message passing. Each processor core will also
have an interrupt that can be raised by the other processor. After this system is initialized, each
processor can send a message to the other by encoding a message in the shared memory region and
raising an interrupt on the other processor. The other processor will then jump to the interrupt
handler, which will fetch the message from the shared memory region and add it to the message
queue. The main software running on each core will be responsible for checking the queue and
handling any messages that are received.

The low-level message passing interface will be somewhat tedious to work with directly, so we will be
creating a higher-level API that will be used to set and get parameters from the other core. For
example, an API function called int IPC_getLocation(Location_t*) would be used to request the
current location of the quadcopter from the real-time core using the lower-level message passing
system. This higher-level API will be the one that researchers in control systems could use to design
high level algorithms that run on the linux core of the processor.

3.3 WiFi Communication

The WiFi communication will be implemented with the ESP8266 microcontroller with integrated WiFi.
The WiFi module will act as an access point, so the ground station can connect to the WiFi network
hosted on the module without any extra configuration. To program the ESP8266, we will use features

17

provided by the Arduino library for the ESP8266, as well as functionality provided by the Espressif
SDK. The module will support both TCP and UDP for communication. To simplify the integration of
WiFi, it will forward data from UART to WiFI, and forward the data received over WiFi to UART. This
way, no changes will be required in the quadcopter software to use WiFi as the communication
method.

3.4 Ground Station

3.4.1 Backend

The backend system will run on its own and handle the VRPN connection as well as the connection to
the quad. It will expose its service via a socket to the front-end. Various front-ends (command line,
control loops, GUI) can close the loop via that socket, without having to worry about details such as
WiFi/Bluetooth, or VRPN vs GPS. The backend will handle parsing of quad data, as well as transmitting
commands to the quad.

3.4.2 Command Line Interface

The command line interface (CLI) will connect to the backend via a socket. The CLI will be listening for
user input in the form of commands. These commands will be parsed and send the correctly
formatted packets to the backend. From there the backend will send to the quad. The CLI will be
listening for responses from the quad at the same time. Providing the data from those responses to
the user.

3.4.3 GUI

The GUI will connect to the backend over the same socket interface as the CLI. The GUI will be able to
support autonomy to various degrees, selectable on-the-fly. This will include full
waypoint-autonomous mode, full manual control, and semi-autonomous mode. In semi-autonomous
mode, one or more coordinates (X,Y,Z) or a subset of attitude DoF (likely just yaw) will be stabilized by
a closed-loop control system, while the rest of the quad will fly with manual control. The GUI will also
support much of the CLI functionality, such as downloading logs from the quad.

4 Test Plan

Here we will explain how to evaluate the success of our methods for approaching the project
statement. At the beginning of this section, we will assess our current proposed solutions, thus
explaining why we believe the solutions planned out in section 2 and described in section 3 will be
better than other possible solutions. Additionally, this section will also include a functional test plan
for checking that our approach was successful and meets our core objectives.

4.1 Assessment of Proposed Solution

4.1.1 Current Quadcopter Software

The current autonomy system on the quadcopter is very unstable and limited, so our plan to improve
upon this system will involve improving many facets of the current software. Currently, the
quadcopter must be manually piloted into a stable flight state, then transitioned into autonomous

18

mode. Once in autonomous mode, the quadcopter will start oscillating about its target position until
the pilot takes control or it crashes. We will start by properly tuning the PID controllers that control
the autonomous system. We will also improve the current system by incorporating a system for
totally autonomous takeoff, flight, and landing.

4.1.2 Ground Station

The current ground station has many limitations that we plan on relieving. We will increase
communication with the quad so that we always know the state of the quad and so that we can
manage the quad better. The CLI and GUI will use a more streamlined command structure than is
currently being used. These commands will send binary data instead of ascii values. This is to reduce
the amount of information needing to be sent back and forth. A GUI with much more information and
input options will be created to replace the old GUI. We will create the ability to determine error flags
from the quad and have constant numerical and visual representations of the quad’s current state. In
addition, the new GUI will provide input methods such as pointing and clicking on a map to make the
quad go where you want it to. This will enable a far wider set of flight options than the current GUI
provides.

4.1.3 Hardware Improvements

The hardware system of the quadcopter when this project began wasn’t very well thought out. The
wiring between the sensors, actuators, and control board were very disorganized, and the control
system was powered by a set of four AA batteries that weren’t at all regulated. The hardware
improvements will primarily focus on solving those problems, plus adding extra functionality that
could be useful for future use of the quadcopter. We will use a custom circuit board that will have a
buck regulator and connectors for routing wiring. We will also add monitoring of voltage and current
from the battery, as well as a high-side solid state switch for controlling power to the motors from
software.

4.1.4 WiFi Communication

The system is currently configured to use Bluetooth as the communication method between the
ground station and the quadcopter. Bluetooth has high latency, around 25ms one-way, which
presents difficulties for autonomous flight and running control algorithms on the base station. WiFi
can send 32KB of data from the ground station to the quadcopter in less than 2ms, which is much
faster than Bluetooth.

4.1.5 Increasing Modularity

For the main purpose of our project, it is important that the system be a modular one for allowing
research students and other controls system students to make use of this platform for a wide range of
possible applications and educational purposes. Each element of the system should be readily
interchangeable, because in doing tests, the researcher must be able to try using different versions
and iterations of each sub-system.

4.1.6 Documentation

To allow for future MicroCART teams to be able to continue the progress of this ongoing project in an
efficient manner, we believe some additional documents need to be created that will help guide

19

future teams through some of the testing procedures and physical concepts we had to learn through a
lot of trial and error and with the help of other graduate students present in the lab. Although, it is
beneficial to struggle through some of these issues and gain experience working through problems
during the design and testing process, we would rather students focus on newer, harder challenges
that come with enhancing the current system, not tackling the same issues that have already been
solved multiple times before.

4.2 Validation and Acceptance Test
Most functional requirements will be verified through experimentation in Coover 3050, especially in
preliminary testing, when our system will be using the infrared tracking system available in the lab. In
the future, when we begin using GPS for navigation of the quadcopter, we will gradually move out of
the lab environment for testing purposes.

4.2.1 Quadcopter Software

Test all of the desired functions for the quadcopter work as intended. This will involve verifying

the different autonomous modes including: basic autonomous stabilization, autonomous point

to point navigation, obstacle avoidance, GPS navigation.

4.2.2 Ground Station

Preliminary testing will involve downloading bulk logged data from the quad using CLI software with
the base station. Further testing will involve testing semi- and full-autonomous modes. Testing
semi-autonomous modes will test the ability of the ground station to forward commands to the quad.
A thorough test of full-autonomous mode will confirm the ability of the ground station to continually
update the control parameters sent to the quad. Eventually, coordinate-based control loops will be
moved to the ground station. When this is done, testing waypoint-based fully-autonomous will test all
ground station capabilities.

4.2.3 Hardware Improvements

After making some improvements to the hardware, before flying the quadcopter we will ensure by
simple inspection that all of the wire connections appear to be secure and will not interfere with the
rotation of the blades, and will not move too much during flight. In addition, each time that we
disconnect especially critical wire connections and reconnect the given hardware connection, we will
test that the connection was properly re-made using the continuity test feature of the multimeter. In
addition, before too many wires connections are updated, we will occasionally perform a simple flight
test to make sure that all of the connections in the system are exactly the same.

4.2.4 WiFi Communication

The WiFi module should be able to send a 32-byte message from the ground station to the Zybo
board, and back to the ground station in less than 10ms. This will be tested by modifying the
quadcopter software to echo the location data sent by the ground station, and calculating the time
difference between sending and receiving the data on the ground station. The communication should
be reliable at the sub-10-millisecond latency up to 100 feet without obstructions. This will be tested

20

by pinging the module outdoors, with a gradually increasing distance between the base station and
module. We will also test the range with the module at various orientations to ensure that the
connection is not dropped when flying. Finally, we will test that the module and ground station will
automatically reconnect if the connection is lost.

4.2.5 Increasing Modularity

To check the level of modularity of the quadcopter system, we can first examine the setup and ensure
that each of the elements of the system are working independently with no critical influence on other
elements in the system. After this preliminary check, we will attempt to replace some of the key
elements, such as the control system, with another element that works differently, but has the same
high-level, input-output functionality, to ensure that everything still runs the same way, although the
behavior of the overall system will most certainly be different.

4.2.6 Documentation

To ensure that our documentation that we write is readily usable by anyone who is not familiar with
the quadcopter system and the sub-system that the document is written for. One approach to testing
that the documentation is clear and easy to follow is to have a member from the team who is
unfamiliar with a particular sub-system to run through the procedure and documentation written to
explain that sub-system. For example, to verify the clarity of the data collection and analysis
procedure for measuring and determining the thrust constant of the quadcopter, which is written by
the controls sub-team, after completing documentation on this process, we will have a member from
one of the other sub-teams, such as the quadcopter software sub-team, who is unfamiliar with the
physics of the quadcopter and its utilization for the testing procedure.

4.2.7 PID Controller Design and Physical Model of the Quadcopter

The controls sub-team must also become very familiar with the quadcopter software, and must also
be able to describe the high-level structure of the code as well as be able to vividly describe how data
is brought in and processed from sensors on the Zybo board, which represent the angular position
and velocity of the quadcopter, as well as its linear position and velocity. In addition to having this
level of conceptual understanding of the quadcopter software and being able to explain the data
processing steps being performed in the software, the team’s PID controller design must also be able
to maintain the position of the quadcopter and ​it must be stable​ , rather than experiencing
uncontrolled oscillations that gradually get larger and eventually cause the quadcopter to yank its
tether and fall to the ground.

21

5 Design Requirements and Specifications

5.1 Functional Requirements
Below is a brief explanation of the functional requirements of the project. This section includes all of
the technical requirements describing the behavior of the quadcopter we want to observe in our final
product. Thus, the enumerated functional requirements in this section will be gradually incorporated
to our project during our senior design experience these next two semesters.

5.1.1 Quadcopter Software Functional Requirements

● The quadcopter will be able to stay at a stationary point in the Coover 3050 lab autonomously,
and deviate less than 1 foot..

● The quadcopter will be able to receive waypoints from the ground station, and autonomously
navigate to them, then remain there until further waypoints are given.

● The quadcopter shall be able to fly in manual mode without a connection to the ground
station.

● The quadcopter will be able to send messages to the ground station with two methods: A
guaranteed delivery method, and a non-guaranteed method.

● The quadcopter shall be able to connect to the Sparkfun LiDAR Lite module, take
measurements from it, and use those measurements as the altitude information for
autonomous flight.

● The quadcopter shall be able to connect to a GPS module, take measurements from it, and use
the GPS coordinates as information about the horizontal location of the quadcopter.

● The linux operating system shall be capable of communicating with the real-time processor
with less than 1ms round-trip latency

5.1.2 Ground Station Functional Requirements

● The ground station will be able to connect to the quad using either bluetooth or wifi. Which
ever is being utilized on the quad at the time.

● The ground station will be able to send waypoints to the quad in the form of relative
coordinates

● The ground station will create event logs and save information about the quad continuously.
● The ground station will be able to send VRPN data quickly enough to enable safe and reliable

autonomous flight
● The ground station will be able to send information to the quad with two methods: A

guaranteed delivery method, and a non-guaranteed method.

5.1.3 Voltage Regulator Requirements

● The voltage regulator will output 5v +/- 2%
● The voltage regulator will provide up to 3A continuous and stay within voltage spec
● The current monitor will measure up to 30A at 12-bit accuracy
● The voltage monitor will measure up to 13v at 12-bit accuracy
● The solid state power switch will be capable of handling up to 30A continuous current

22

5.1.4 Wifi Module Functional Requirements

● The ground station will be able to send 32 bytes to the quadcopter in less than 5ms, and the
quadcopter will be able to send 32 bytes to the ground station in less than 5ms.

● The quadcopter and ground station will be able to communicate for up to at least 100 ft
without obstruction.

● The WiFi module will be able to send data over a protocol that guarantees delivery.

5.1.5 Control System Functional Requirements

● The quadcopter, while in autonomous mode and while in the Lab, shall be able to hover and
remain at a fixed point.

● The quadcopter, while in autonomous mode and while in the Lab, shall be able to travel from a
point in space to another point in space autonomously, when given a position input from the
user in the GUI interface.

● The quadcopter, while in autonomous mode and while outside, shall be able to hover and
remain at a fixed point.

5.2 Non-functional Requirements
In this section, we list the non-functional requirements we have determ of the project. This is where
you would enlist non-technical requirements. This may still be a fundamental deliverable that your
client needs at the end of the semester.

5.2.1 Current Quadcopter Software Non-functional Requirements

● The autonomous flight mode should be stable and without oscillations
● Sending messages over the guaranteed and non-guaranteed methods should not require

excessive burden on the programmer.
● The quadcopter should be able to fly without requiring a ground station or camera tracking

system to be initialized.
● LiDAR should provide accurate enough altitude to enable autonomous takeoff and landing for

future control systems.
● Communicating between Linux and the dedicated control algorithm should not require

extensive work to perform the inter-processor communication.

5.2.2 Ground Station Non-Functional Requirements

● Written largely in C
● Maximize code reuse between CLI and GUI programs
● Leave readable code for future teams
● Design to allow modular replacement of components
● Code should be written to good, safe standards.

5.2.3 Voltage Regulator Non-Functional Requirements

● The custom PCB shall be small enough to fit in the spare space on the quadcopter frame
● All ESC signals shall be broken out to allow custom signal injection
● The WiFi module shall be placed on the board in an orientation that does not affect signal

strength

23

● All wiring shall be neatly routed to and from the PCB

5.2.4 Wifi Module Non-Functional Requirements

● The WiFi module should be lightweight and low power
● The communication should be fast enough to enable running the control algorithm on the

ground station.

5.2.5 Control System Non-functional Requirements

● The control system shall be implemented with a PID controller
● The quadcopter shall be controlled with 9 PID controllers, consisting of the following:

○ 3 PID controllers controlling the angular position of the quadcopter
○ 3 PID controllers controlling the angular velocity of the quadcopter
○ 3 PID controllers controlling the linear position of the quadcopter

● Each PID controller shall be implemented as a PID_controller object within the quadcopter
software, having the following fields:

○ Ki constant, the integral constant of that particular PID controller object
○ Kp constant, the proportional constant of that particular PID controller object
○ Kd constant, the derivative constant of that particular PID controller object

6 Challenges

Include any concerns or details that may slow or hinder your plan as it is now. These may include
anything to do with costs, materials, equipment, knowledge of area, accuracy issues, etc. This should
also include risks, an assessment of the feasibility of this project, as well as considerations of cost with
a realistic estimate of project costs.

6.1 Risks
Some possible risks that our team may incur, which would slow our progress while working on this
project, include possibly damaging the hardware or other equipment on the quadcopter. This would
increase the amount of money spent, beyond what we specify in our estimated project costs in the
upcoming section, and it would additionally pause our progress until we can purchase and implement
replacement parts.

Another important risk that our team must try to prevent from occurring is having a lack of
communication between sub-teams and with the advisers. Not having good communication poses a
problem because when working on a project it is important to communicate when major obstacles
come in the way, instead of quietly trying to resolve the issue personally, for it is very useful to discuss
potential solutions and come up, as a team, with the best course of action to follow. In addition, when
changes are made to the current system without good communication with other team members,
whether they are small or large, this can cause great inefficiencies in development and may require an
annoying, tedious process of undoing large amounts of work done to find the original issue between
what different sub-teams were expecting in their design and rework what was done so that all teams
have a consistent understanding of the system and have that understanding reflected into their own
contribution of the current design.

24

6.2 Feasibility Assessment
Physical modeling of the quad requires an accurate way of determining moments of inertia.
Historically, this task has been completed with experiments involving the ECP. However, after
thorough experimentation, we have determined that the ECP gives inconsistent data, so we will need
to develop a new method of accurately measuring the moment of inertia of the quadcopter.
Fundamental obstacles like these will delay our progress, since we need certain functionality to be in
place before we can move on to the next tasks in order. So, if and when we run into these obstacles, it
will cause us to be behind on our scheduled goals according to our timeline, which is in the next
section, section 7. And indeed, our timeline is quite tight, so it will be difficult to keep up with our
goals once we get behind. This may prevent us from being able to accomplish some of our final goals
at the end of next semester, like doing advanced flight maneuvers or incorporating a camera sensor
onto the quadcopter for outdoor flight.

6.3 Cost Considerations
The motors used by the quadcopter are no longer manufactured or supported, so we will likely need
to invest in a new set of motors, as well as backup motors, in case one of the current motors is
broken. In addition, for some of the hardware improvements we had in mind, we will need supplies to
create the power distributor and voltage regulator circuit, which will be on a PCB. These items have
been approximated for cost and included below, in ​Table 1​:

Item Associated Cost
6 new motors $200

Supplies for power management circuit $100

Total Cost

$300
Table 2: Cost Considerations

25

7 Timeline

To have a successful attempt at our senior design project, we will need to come up with an
approximate schedule for when we want to have our tasks completed over the course of the next two
semesters. Therefore, we followed the advice of our senior design professor about “working
backwards”. So we discussed together as a group our goals for this semester, what our needs are for
tasks we must have accomplished before the start of next semester, and thus, what we need to
accomplish over the course of this semester to get to an ideal state for the overall project so that we
have time to accomplish everything that we would like in Spring.

After deciding these “milestone” points, we went through the individual tasks we wanted to complete
for each milestone, thought of about how long that task would take us to accomplish, and came up
with a general sense of by what time we wanted to accomplish it. Thus, using this method of
scheduling out our tasks over the next academic year, we came up with the timelines presented in the
next two subsections. One representing, the time schedule for our tasks over the rest of this
semester, Fall of 2016, in section 7.1, and the other representing our scheduled tasks over the course
of the following semester, Spring of 2017.

7.1 First Semester
For the first semester, our team must first become very familiar with the current structure of the
quadcopter software structure and code, as well as the hardware setup of the system, thus gaining a
more textured understanding of how the system works on a high-level and at much lower levels as
well. In addition to being a first step toward our senior design project, this is also somewhat of a
continuous, ongoing process, for as we work with different parts of the system more closely, we
should try to become even more familiar with that particular sub-system and gain a very good
understanding of how it works and relates to the other systems within the quadcopter.

To achieve these goals, our team will spend time reading documentation created by last year’s team,
including their final report, their systems level diagrams of the system overall, and the procedures
they wrote on how they took measurements of the quadcopter. In addition, to gain a more intuitive
sense of how the quadcopter system flies, responds to different manual inputs, and controls its
position in space, we will all learn how to fly the quadcopter adequately well.

We will also need to work more closely with the MicroCART quadcopter and replicate what previous
semesters have done to implement the current abilities and functionality of the quadcopter, thus
getting us more familiar with not just what the previous team has done to program the system to
maintain its current position with some manual inputs, but also how their programs work in detail, for
the quadcopter to remain steady.

In addition, we will need to start taking measurements and characterizing the quadcopter. This
includes measuring the moment of inertia of the quadcopter about the roll, yaw, and pitch axes, as
well as measuring the thrust constant and drag constant. There are additionally many other
measurements we will have to take, all of which are listed and in the graduate thesis we are reading,
written by Matt Rich, one of the advising students working with MicroCART this year.

Taking measurements is important in order to build on a mathematical model of our system and
perform system identification to design an optimized control system by systematically deriving the

26

PID constants for controlling the motion of the quadcopter about different axes of rotation and with
respect to its linear position axes, defined from its own point of reference. See our Fall semester
timeline below in ​Figure 10​ starting from the beginning of October.

Figure 10: Fall Semester Timeline

7.2 Second Semester
For our second semester, we must continue our progress we made in the first semester, as needed, if
we get behind on our first semester schedule. Additionally, we need to go beyond what we
accomplished our first semester. This will include us building on the foundation we laid out during our
first semester, which is characterizing the quadcopter, developing the 9 optimal PID controllers, and
fine-tuning these constants so that we can enable the quadcopter to hover and hold its position in
space autonomously, as well as to fly autonomously to different waypoints which we specify in space,
using the GUI interface designed for this very purpose.

On top of this foundation of the capabilities of the quadcopter, and assuming we have completed
everything on time, according to our timeline laid out for the rest of this semester, we can do many
interesting things our second semester, and possibly make progress on our ideal goals listed at the
end of the semester if we have time. Our goals for the second semester include being able to fly the
quadcopter outdoors autonomously, using a mixture of GPS data and accelerometer data so that the
quadcopter can determine a best approximation of its position in space, and fly quite accurately,
while overcoming the 1 meter range of error that comes with GPS. If we can successfully get to this
point, then we can start looking into some of the other functionalities we wanted to implement, as

27

well, including performing advanced flying maneuvers, such as rotating while moving in a line in a
horizontal plane. Our scheduled time line for the second semester is recorded below in ​Figure 11​:

Figure 11: Spring Semester Timeline

28

8 Conclusions

This year (the 2016 to 2017 academic year), MicroCART will improve the current system by increasing
modularity and designing PID controllers to manage the movement of the quadcopter in each axis of
rotation and linear motion. Eventually, starting next semester, we will begin the process of enabling
the quadcopter to fly outdoors using GPS navigation, along with a LIDAR sensor attached underneath
to detect its height above ground or obstacles located beneath it, which will be important for
achieving successful landings. Finally, after accomplishing these main goals listed, we would
potentially like to enable the quadcopter to perform advanced flying maneuvers, as well.

29

9 References

"Products." ​DJI Store​ . DJI, 2016. Web. 12 Oct. 2016. <http://store.dji.com/>.

Rich, Matthew. ​Model Development, System Identification, and Control of a Quadcopter Helicopter​ .
Thesis. Iowa State University, 2012. Ames: Graduate Theses and Dissertations, 2012. Web.

30

