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1 Definition of Terms

Below are some of the terms we use regularly in this project plan document:

Term Description

CL Command Line Interface, will be used to take in user input to get data from the
guadcopter and give it flight commands

ESC Electronic Speed Controller, a component between the Zybo board and the motor,
which takes in a PWM signal from the board and converts this to an amplified
current to control the speed of the motor

GUI Graphical User Interface, will be used to take in user input to get data from the
guadcopter and give it flight commands

LiPo Lithium-ion Polymer battery, the type of batteries used on the quadcopter

LiDAR Light Detection and Ranging, a laser used to detect and measure distances (ranging)

MicroCART Microprocessor-Controlled Aerial Robotics Team, our senior design team

PCB Printed Circuit Board, will be designed to include a battery voltage regulator and
power distributor for improved power management on the quadcopter

PID Proportional-Integral-Derivative, a commonly used type of feedback controller

PWM Pulse-Width-Modulation, a digital signal with varying duty cycle but constant period,

which is received by each of the ESCs to control the speed of each motor

Table 1: Definition of Terms




2 Introduction

The MicroCART (Micro-processor Controlled Aerial Robotics Team) senior design project has been passed
down from team to team since 2006, developing a quadcopter for research purposes. Up to now, the
MicroCART quadcopter (Figure 1) has been flying in the Distributed Sensing and Decision Making
Laboratory, using the twelve-camera infrared tracking system for navigation. The quadcopter has been
gradually improved by the work of each senior design team, and currently has much of the hardware
necessary to accomplish our goals for this academic year.

Figure 1: MicroCART Quadcopter

2.1 Project Statement

We intend to create a modular platform for research in controls and embedded systems, building on the
current system developed by previous teams. In addition to improving the modularity of the quadcopter
system, we intend to advance its abilities and functions, including developing the ability to fly
autonomously through a sequence of user-specified waypoints and to fly outdoors, without the help of
the infrared tracking camera system in lab.

2.2 Purpose

By creating a modular platform, we wish for any controls student to be able to design their own
controller, including new types of controllers, and test it with our system easily. In addition, we hope to
develop a system that can execute more impressive abilities, including autonomous flight, flying
outdoors using GPS navigation, and also potentially performing advanced flight maneuvers. Having these
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more impressive capabilities to demonstrate will help excite new students, give them a friendly,
hands-on platform to learn about controllers, and better represent the talents of our department to
visitors, other interested students and faculty members. Furthermore, if we develop a platform that
works well and is easy to use, this system will likely be used and added into the second semester course
for controls systems, EE 476, where it can help students gain a more intuitive understanding of PID
controllers and give them a platform to test their designs.

2.3 Goals

We plan to design several PID controllers for each direction of movement. Our plan will differ from
approaches used in the past, deriving the controller from a systematically developed mathematical
model of quadrotor dynamics, in accordance with the approach developed in a thesis written by one of
the advising graduate students. Thus, we will initially conduct system identification of our quadcopter by
taking measurements and performing data analysis, and afterwards utilize these parameters to
characterize and implement the linear control systems necessary for controlling the movement of the
quadcopter. We will also create a user interface that can be used to select waypoints which the
quadcopter will follow while in autonomous flight. Eventually, we also want the quadcopter to be able to
fly outdoors, without the infrared camera tracking system in the lab, by using GPS for navigation instead
and a LIDAR sensor to detect the presence of obstacles located underneath the quadcopter.

Our advisors, Dr. Jones and Dr. Elia, had some high-level goals for what he wanted from our project,
which can be summarized by the following points:

e Build a modular system for the quadcopter, so that each component can be easily removed and
replaced by another of the same functionality, without breaking the operation of the entire
system

e Design a control system for the quadcopter from a mathematical model representation of the
guadcopter system, rather than from iterative testing procedures as done from previous teams

e Decrease the communication latency between the quadcopter and the ground station to be less
than 10 milliseconds on average, to increase the stability of the system overall, which will most
likely require WiFi communication rather than the current Bluetooth communication system

e Ensure that the communication system and controls system work together robustly, such that if
any data packets are dropped, the quadcopter does not lose control and potentially damage
itself

e Create a user-friendly GUI with nice multi-panel layout and click navigation features for the user
to easily specify waypoints for the quadcopter to travel between

e Throughout the development process, create detailed and user-friendly documentation and
tutorials for future MicroCART teams to follow and learn from, including video tutorials as well,
and keeping the two-decade-long Wiki page up-to-date



3 Deliverables

The quadcopter system can be compartmentalized into three major subsystems or sub-projects: the
development of the quadcopter software, the ground station, and the PID controls systems on the
quadcopter. We will need to work on each of these components to transform it to a particular, useful
state which will be essential to meet our objectives. In addition, there are overall, all-encompassing
aspects of the project that we need to address, including improving on the modularity of the system.

3.1 Current Quadcopter Software

3.1.1 Autonomous Flight

The quadcopter has an autonomous mode in which it attempts to remain at a fixed point in space using
the infrared camera tracking system in the lab. It is currently unstable and unreliable. Our team plans to:

Update the controllers to improve the performance of this autonomous ability.
Add the ability to receive waypoints from the ground station and fly towards the given point,
regardless of the current location. (within the Coover 3050 IR tracking system)

Figure 2: Tracking System Camera

3.1.2 Improved Communication System

Communication between the ground station and quadcopter is currently done using bluetooth, which
limits the range, bandwidth, and latency of our communication. On the quadcopter, we will:

® Replace the bluetooth receiver with a WiFi receiver, which will improve these three metrics [1]
e Design a communication system that will support both low-latency transfer of real-time data
over UDP, as well as reliable data transfer for TCP



o This will require us to update the command structure on the quadcopter to differentiate
between UDP and TCP

3.1.3 Support Flying without Ground Station

The current quadcopter software requires that the ground station be connected in order for any flight to
start, which is unnecessary for flight modes that don’t require data from the camera system. We plan to:

e Remove this requirement for any flight mode not requiring data from the camera system, such as
manual and GPS-based autonomous flight modes

e Add a watchdog timer that will monitor the communication link in modes requiring camera
data— such as indoor autonomous mode— that will force the system into manual mode if
communication with the base station is lost

3.1.4 LiDAR Altitude Control

Once we have basic stabilized flight using the camera system, we will:

e Implement a LiDAR system which will allow autonomous control of altitude.
o This system will involve a single LiDAR pointing downward so that we can measure the
distance to the ground.
e The LiDAR distance reading will then be added into the PID control loop as the Z position.

Figure 3: LIDAR Sensor

3.1.5 Support GPS Navigation

The quadcopter currently receives position information for the camera system in 3050, which limits our
autonomous capabilities to that specific area. Once we have basic stable flight using the camera system,
and LiDAR control for altitude, we plan to:

® Integrate GPS into the system.
e Use the GPS data to add the ability to navigate autonomously outside of the camera system.
o Using the GPS for the horizontal position and LIDAR for Z position the quad will be able
to navigate outside.



3.1.6 Running Linux on second core

The Zyng-7000 SoC, as shown in Figure 4 below, runs the software on the quadcopter, and it contains
two ARM processor cores [7]. Currently, all of the quadcopter software runs on only one of the cores,
while the other core is unused. To better support research, we will:

e Configure the unused core to run linux, which will expose higher level functionality to the
programmer.
e Create a set of libraries that will allow programs to communicate with the real-time control
program running on the other core.
o These will allow researchers to use higher-level functionality, such as the computer
vision library OpenCV, on the quadcopter without much effort.

Figure 4: Zyng-7000 SoC on Zybo Board

3.2 Ground Station

3.2.1 Real Time Communication

The current system has a limited amount of communication between the quadcopter and the ground
station. We want to have feedback from the quadcopter at all times in order to verify that we are
performing the correct functions.

e Constant real time communication between quadcopter and ground station

e Ability to log data at all times from quadcopter, in both manual and autonomous mode

3.2.2 Back End

The back end will be designed to be a modular piece of the ground station. Any front end, whether it be
a command line interface or a graphical user interface, will connect to the back end via a socket
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connection. This backend will accept input through this socket and forward it through another socket
connected to the quadcopter.

e Complete connection to quadcopter through a back end
e Server-Client relationship between back and and front end
e Command pass through from front end to quadcopter

3.2.3 Command Line Interface

A command line interface (CLI) will provide the lowest level of front end ground station control. Users
will be able to set and request any relevant variables such as PID constants, pitch, roll and yaw set points.

e Command passing to backend through socket connection
e Multiple instances of CLI at any moment
e Wait for response from backend

3.2.4 Graphical User Interface

The current GUI system has a rather limiting set of options. If connection issues occur between the GUI
and the quad, the only thing we know is that the connection was lost. While utilizing our new real time
control, we will implement a more descriptive error detection and recognition. Continuing with the real
time control, we will have constant updates of VRPN data as well as the current and desired position of
the quad. We intend for the GUI to extend the usability of the CLI and provide easier control over high
level aspects of the system.

Visual command passing to backend through socket connection

Graphical map waypoint selection

Use the constant communication that the back end has with the quad to provide constant useful
updates to the user

3.3 Hardware Improvements

Because this project has been passed down over many semesters with the focus of each team being to
add functionality to the quadcopter, the actual system hardware is currently in a non-ideal state. Wire
connections are not very secure, some wire connections are being held together with tape, and some
plugs are very tight. Along with the rewiring of the quadcopter in general, we would like to design our
own PCB which will regulate power on the quadcopter system. The old system utilizes 4 AA batteries
which is unnecessary weight. These batteries also could not be fully charged as 4 AA batteries when fully
charged is about 6 volts, when the board is powered off of 5 volts.

11



Figure 5: Current Quadcopter Hardware State

Creating our own board will also allow us to add additional quality of life components. We intend to
explore improvements to these issues by doing the following:

e Replace all tape-maintained wire connections with secure wire connections
e Replace the plug connecting the battery with ones that are easier to open and close
e Design a PCB to have the following qualities to regulate power on the quadcopter:
o Regulate the LiPO battery to power the Zybo board:
m  From 11.1 volts to 5 volts
m At 3 amperes
o Monitor the current and voltage of the LiPO battery
o Include a motor cutoff switch
o Allow for easy access to all of the signal lines

3.4 WiFi Communication

The system is currently configured to use Bluetooth as the communication method between the ground
station and the quadcopter. Bluetooth has high latency, which presents difficulties for autonomous flight

and running control algorithms on the base station. To improve this, we will:

® Replace Bluetooth with WiFi, using an ESP8266 microcontroller with integrated WiFi.
e Test different configuration parameters to identify the fastest way to send data.
® Write code to implement the communication.

12



Figure 6: WiFi Module

Our goal is to be able to send data between the ground station and the quadcopter with less than 5ms
latency, which would result in 10ms round-trip, a small enough delay to allow the entire control
algorithm to execute on the ground station.

3.5 Documentation
In order for subsequent teams to continue the project effectively, critical procedures need to be
documented. In terms of developing good tutorials and instructions for future teams, we plan to:

® Write testing procedures for performing measurements for system identification including:
o Taking moment of inertia measurements about the pitch, roll, and yaw axes
o Measuring the thrust and drag constants
o Determining the motor resistance
e Our documentation for test procedures will also include the following:
o MATLAB scripts used to perform data analysis
o Pictures of our setup for each test procedure, accompanying a written description and
set of instructions for setting up
o Video tutorials, also will be made available on our website, of our test procedures

3.6 PID Controller Design and Physical Model of the Quadcopter

The quadcopter is stabilized by multiple proportional-integral-derivative (PID) controllers. Historically,
the coefficients of the PID controller have been determined through iterative optimization. Since this
approach has a couple of downsides, which will be explained in more detail later, our team plans to
characterize the quadcopter with a mathematical model and to then derive the PID coefficients from
that model. More specifically, our team intends to:

e Create a mathematical model representation of the quadcopter system by following the thesis
written by Matt Rich
Simulate the quadcopter in Simulink from our mathematical model
Design PID controllers from this mathematical model

13



4 Design

Below are the methods of approach our team came up with for our project. We plan to heavily reference
a graduate thesis [6] written by Matthew Rich, who is currently one of the advising students for
MicroCART, when designing the control system for the quadcopter. We have also included some
systems-level block diagrams to help demonstrate where our plans lie with respect to the overall
structure of the quadcopter system.

4.1 Previous Work and Literature Review

Our project this semester for MicroCART will include the design of a PID controller that is based on a
mathematical model of the quadcopter, as derived and developed in Matt Rich’s thesis. This thesis was
specifically written for the purpose of developing a mathematical model that is simple enough that
undergraduate students can easily understand it, but that is also rigorous enough that a robust control
system can be designed to allow the quadcopter to maintain its current position and move to a new
position. Indeed, one of the core objectives of Matt Rich’s thesis was to “work cooperatively with the
MicroCART project” [6].

Another quadcopter system also used for research platforms for controls applications is called Ascending
Technologies, which is a well-known quadcopter company that is part of Intel. This company creates
many different types of UAVs for research purposes. Allows for the user to implement his or her own C
code with his or her design controls algorithms. Like our quadcopter, this system also uses two ARM
microprocessors. Additionally, with this system there is a strong, robust controller that can be switched
on if the experimental controller is making the quadcopter unstable [5].

VY3 8] Hummingbicd

Figure 7: Ascending Technology Hummingbird Quadcopter

Looking at this example and its capabilities helped us realize what we wanted to see from our
quadcopter system, with our goals for modularity and the ability to have a robust controller. Additionally,
for a strong research platform, we would be able to take over with our robust controller the same way
that this system does.

4.2 System Design
The overall system is composed of four main components including the communication system, control
system, actuation, and sensor system as shown below in Figure 8.
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Communication
System

: Control System . Actuation »  Sensor System

Figure 8: High-Level System Block Diagram

4.2.1 Communication System

The input to the control system from the communication system is dependant upon indoor or outdoor
flight. When flying in the distributed autonomous and networked control lab, the x, y, z position of the
quadcopter in space is determined from an OptiTrack camera system. This information must then be
passed to the quadcopter through the ground station. However, during outside flight, the x, y position
will be determined from an onboard GPS module, and the z position will be determined with a LiDAR
solution. This GPS module and LiDAR solution will be a part of the sensor subsystem described in Section
4.2.4. Alongside this, the communication system will also provide any user input from the command line
interface (CLI), or controller during manual flight. This overall communication process is represented
below in Figure 9.

OptiTrack
Camera System
Data
(x,y,z position)
Ground/Base N
Station "

User Interface

Command

Line Interface
(CLI

Controller
Commands

Figure 9: Communication System Block Diagram

4.2.2 Control System

The quadcopter is stabilized by multiple proportional-integral-derivative (PID) controllers. Historically,
the coefficients of the PID controller have been determined through iterative optimization. However, this
approach has a couple of downsides. Since an iterative approach is technically a guess-and-check
method, it has little guarantee or assurance of yielding the most optimal system. It also only yields
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appropriate parameters for the system on which the experimentation was performed. An alternative and
preferable approach is to characterize the quadcopter with a mathematical model and to then derive the
PID coefficients from that model. This approach has the advantage of having theoretical assurances of
yielding an optimal controller design and also being general enough to apply to different quadcopters
that fit the same generic model [6].

As described in Section 4.2.1 and Section 4.2.4, the control system inputs come from both the
communication system and sensor system. The entire control system is composed of multiple nested PID
controllers. The composition of a PID controller in a feedback loop is shown below in Figure 10, where
r(t) is the set point value, and y(t) is the measured output. The primary components of the PID controller
include the K, K, and K, terms, which denote the coefficients for proportional, integral, and derivative
terms, respectively [3]. These coefficients will be determined using a mathematical model of the
quadcopter as described in the introduction of Section 4 and in Section 3.6.

Kye(t)
Il e t .
(t) +=© k ” Kfj e(r)dr ’<> *» Plant/Process ) >
A 0 . ;
| de(t)
T dt

Figure 10: PID Controller Block Diagram

The overall control system is broken down into four major subsections including the height controller
(z-axis), longitudinal controller (y-axis), lateral controller (x-axis), and a dedicated yaw controller [6].
Most of these controllers have nested controllers associated with them, as shown below in Figure 11.
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Figure 11: Nested Loop PID Architecture

This architecture allows us to not only control the body frame position of the quadcopter, but its velocity
as well. When describing things in terms of body frame we are referring to the frame of reference of the
body of the quadcopter, which assumes that the origin of this axis lies at the center of mass of the body

[6]. The variables utilized in Figure 11 are defined in Table 2 below. Note that in the above image

variables denoted with the subscript

represent setpoint values.

Variable

Definition

X

Body frame x position

Body frame y position

Body frame z position

Body frame roll angle

Body frame pitch angle

Body frame yaw angle

Body frame roll angular velocity

| B S| | &N =

Body frame pitch angular velocity
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Ij} Body frame yaw angular velocity
Ur Throttle command
Uy Aileron command
Ug Elevator command
Up Rudder command

Table 2: PID Architecture Variable Definitions

The last portion of the control system is converting the actual output commands of the controllers to
equivalent input commands for each of the four individual electronic speed controllers (ESCs). To do this
we utilize a signal mixer [Matt’s thesis], defined by the following matrix:

1 -1 1 1
M. = 1 -1 -1 -1
g 1 1 -1 1
1 1 1 -1
This addition is shown in Figure 12 below:
Zr Height Ur
Controller
+
z
I Longitudinal Roll ¢ Roll Rate Ya
Controller Controller Controller
+ +
¢
P
¢ —> Signal Mixer ——
pd 0, 2
i} Lateral " Pitch " Pitch Rate Ug
Controller Controller Controller
+ + +
6
a
x
¥ Yaw v Yaw Rate Ur
Controller Controller
+ +
¥
P

Figure 12: Nested Loop PID Architecture with Signal Mixer

Note that “P” in the above system diagram represents the vector of all four ESC duty cycle percentages.
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4.2.3 Actuation

The actual actuation, or mechanical movement of the quadcopter occurs through the driving of each
motor/rotor combination [6]. As stated previously the output from the control system provides ESC duty
cycle percentages, these percentages are used by the ESC to coordinate what voltage to apply to each
motor, represented as the vector V in Figure 13. The ESCs themselves are powered from a 11.1V LiPO
battery (nominal voltage). From there the we can determine the actual angular velocity and acceleration
defined below:

u-[2

where ® and a represent the angular velocity and acceleration respectively [Matt’s thesis]. From this
we are able to derive the overall block diagram for the actuation of the quadcopter.

P v o M
——» ESC System > Sy;:r:] » Rotor System |—
3
Vy
Battery

Figure 13: Actuation System Block Diagram

4.2.4 Sensor System

The sensor system is composed of the MPU-9150 IMU (Inertial Measurement Unit) which provides
gyroscope and accelerometer data and is also an input to the control system. Alongside this, during
outside flight the OptiTrack camera system will be replaced with a dedicated GPS module and LiDAR
solution for determining the x, y, z position of the quadcopter. Data from the gyroscope and
accelerometer can be used to find the yaw, pitch, roll angles, and angular velocities. With this and either
the OptiTrack camera system or GPS module and LIDAR solution, we are able to provide all the required
inputs to the control system.
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Figure 14: Sensor System Block Diagram

We have recently been looking into representing these systems in our Simulink model of our quadcopter
in the best possible way. Currently our software code that takes the readings from the IMU to determine
the pitch and roll angle of the position of the quadcopter is based on the a few equations. And though
this makes intuitive sense, since we were able to rederive these equations using basic trigonometry, our
graduate student advisors, Matt and lan, have been explaining to us that some researchers may have
developed a better way to represent these angles of the quadcopter [2]. We will look into this to see if
this is indeed a better method that will be worth switching to depending on how much more accurate it
is as well as how much more effort it requires and complication it adds to the project.

4.3 Quadcopter Software

4.3.1 Autonomous Flight

The stationary mode of the autonomous flight already has PID controllers configured. These just need to
be tuned correctly. The waypoint mode can be designed in a few possible ways, which we will
investigate. The most promising method is to incrementally adjust the <X,Y,Z> setpoint after each
iteration of the control loop. This will allow the controller to continually move towards the waypoint
without accumulating large errors, which would result in the quadcopter wildly overshooting the
waypoint.

4.3.2 Improved Communication System

In order to decrease the communication latency between the ground station and the quadcopter, we will
replace the bluetooth module with an Espressif ESP8266 microcontroller with integrated WiFi. To allow
for guaranteed and non-guaranteed delivery types, we will use the built-in TCP and UDP, respectively, or
build our own message verification built around UDP.
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4.3.3 Support Flying without Ground Station

To liberate the quadcopter from its dependency on the ground station, we will need to refactor the code
to allow the quadcopter program loop to continue without waiting for the ground station. We will first
require that the quadcopter have this independence only when flying in manual mode, since
autonomous flight currently requires camera data for stabilization, which is currently given to the
guadcopter from the base station. Once the quadcopter can fly without the camera system, we will add
autonomous flight back in when not connected to ground station.

4.3.4 LiDAR Altitude Control

LiDAR will be used as an altitude sensor when the tracking data from the infrared camera system is not
available. The altitude provided by GPS is relative to sea level, which makes it impossible to reliably land
in autonomous mode. To get accurate altitude measurements, we will add a LiDAR-Lite v3 from Sparkfun
to the quadcopter. When the quadcopter is flying outside of the camera system, it will use the LiDAR
sensor for z-axis localization. When the quadcopter reaches altitudes out of range for the LiDAR sensor, it
will fall back on GPS altitude, which is sufficiently accurate at those heights.

4.3.5 Support GPS Navigation

To support GPS navigation, we will have to modify the quadcopter software to interpret locations relative
to the starting location. The current software receives absolute coordinates from the infrared tracking
system. To use relative locations, we will modify the software to obtain its location on startup, and
transform any new coordinates to the relative coordinate system. For GPS, we convert coordinates to the
local system, and then convert them to meters. We may also need to add a layer of sensor fusion to
combine the GPS and accelerometer data to provide more accurate location data at a higher frequency
than can be obtained from solely GPS.

4.3.6 Running Linux on second core

Running linux on the a single core of the Zync-7000 SoC is fully supported by the Xilinx toolchain, so
actually loading the operating system won’t require too much of our own design. The most complicated
part of this deliverable is creating the libraries that will simplify communication between the linux core
and the real-time control core.

At the lowest level, the IPC (inter-processor communication) system will memory map a shared region of
memory on both processors that will be used for message passing. Each processor core will also have an
interrupt that can be raised by the other processor. After this system is initialized, each processor can
send a message to the other by encoding a message in the shared memory region and raising an
interrupt on the other processor. The other processor will then jump to the interrupt handler, which will
fetch the message from the shared memory region and add it to the message queue. The main software
running on each core will be responsible for checking the queue and handling any messages that are
received.

The low-level message passing interface will be somewhat tedious to work with directly, so we will be
creating a higher-level API that will be used to set and get parameters from the other core. For example,
an API function called int IPC_getLocation(Location_t*) would be used to request the current location of
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the quadcopter from the real-time core using the lower-level message passing system. This higher-level
APl will be the one that researchers in control systems could use to design high level algorithms that run
on the linux core of the processor.

4.3 WiFi Communication

The WiFi communication will be implemented with the ESP8266 microcontroller with integrated WiFi.
The WiFi module will act as an access point, so the ground station can connect to the WiFi network
hosted on the module without any extra configuration. To program the ESP8266, we will use features
provided by the Arduino library for the ESP8266, as well as functionality provided by the Espressif SDK.
The module will support both TCP and UDP for communication. To simplify the integration of WiFi, it will
forward data from UART to WiFl, and forward the data received over WiFi to UART. This way, no changes
will be required in the quadcopter software to use WiFi as the communication method.

4.4 Ground Station

4.4.1 Backend

The backend system will run on its own and handle the VRPN connection as well as the connection to the
quad. It will expose its service via a socket to the front-end. Various front-ends (command line, control
loops, GUI) can close the loop via that socket, without having to worry about details such as
WiFi/Bluetooth, or VRPN vs GPS. The backend will handle parsing of quad data, as well as transmitting
commands to the quad.
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Figure 15: Backend Daemon

The backend daemon runs and manages connections with the quad. Communication with the quad uses
a low-overhead binary protocol. It also connects to the tracking system and forwards tracking
information to the quad. Frontends, CLI or GUI, connect to the backend and issue commands in an
easy-to-parse ASCII protocol. These commands manipulate the state of the quadcopter.
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Figure 16: Command Line Interface Block Diagram

23



The design of the CLI is to create a Client-Server relationship with the BackEnd. The CLI will be split up
into separate programs. These programs will either create a connection and perform the task, or create a
connection and hold it until the user is done with the task. This will allow tab completion in a shell, bash
scripting to allow test scripts as well as a history of commands with BASH_HISTORY.

4.4.2 Command Line Interface

The command line interface (CLI) will connect to the backend via a socket. The CLI will be listening for
user input in the form of commands. These commands will be parsed and the correctly formatted
packets will be sent to the backend. From there the backend will send to the quad. The CLI will be
listening for responses from the quad at the same time, providing the data from those responses to the
user.

4.4.3 GUI

The GUI will connect to the backend over the same socket interface as the CLI. The GUI will be able to
support autonomy to various degrees, selectable on-the-fly. This will include full waypoint-autonomous
mode, full manual control, and semi-autonomous mode. In semi-autonomous mode, one or more
coordinates (X,Y,Z) or a subset of attitude DoF (likely just yaw) will be stabilized by a closed-loop control
system, while the rest of the quad will fly with manual control. The GUI will also support much of the CLI
functionality, such as downloading logs from the quadcopter.
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5 Test Plan

Here we will explain how to evaluate the success of our methods for approaching the project statement.
At the beginning of this section, we will assess our current proposed solutions, thus explaining why we
believe the solutions planned out in section 2 and described in section 3 will be better than other
possible solutions. Additionally, this section will also include a functional test plan for checking that our
approach was successful and meets our core objectives.

5.1 Assessment of Proposed Solution

5.1.1 Current Quadcopter Software

The autonomous mode of the quadcopter is very unstable and limited, so our plan to improve upon this
system will involve improving many facets of the current software. Currently, the quadcopter must be
manually piloted into a stable flight state, then transitioned into autonomous mode. Once in
autonomous mode, the quadcopter will start oscillating about its target position until the pilot takes
control or it crashes. We will start by properly tuning the PID controllers that control the autonomous
system. We will also improve the current system by incorporating a system for totally autonomous
takeoff, flight, and landing.

5.1.2 Ground Station

The current ground station has many limitations that we plan on relieving. We will increase
communication with the quad so that we always know the state of the quad and so that we can better
manage the quad. The CLI and GUI will use a more streamlined command structure than is currently
being used. These commands will send binary data instead of ascii values, which will reduce the amount
of information needed to be sent back and forth. A GUI with much more information and input options
will be created to replace the old GUI. We will create the ability to determine error flags from the quad
and have constant numerical and visual representations of the quad’s current state. In addition, the new
GUI will provide input methods such as pointing and clicking on a map to make the quad go where you
want it to. This will enable a far wider set of flight options than the current GUI provides.

5.1.3 Hardware Improvements

The wiring between the sensors, actuators, and control board are very disorganized, and the control
system was powered by a set of four AA batteries that were not regulated. Our hardware improvements
will primarily focus on solving those problems, plus adding extra functionality that could be useful for
future use of the quadcopter. We will use a custom circuit board that will have a buck regulator and
connectors for routing wiring. We will also add monitoring of voltage and current from the battery, as
well as a high-side solid state switch for controlling power to the motors from software.

5.1.4 WiFi Communication

The system is currently configured to use Bluetooth as the communication method between the ground
station and the quadcopter. Bluetooth has high latency, around 25ms one-way, which presents
difficulties for autonomous flight and running control algorithms on the base station. WiFi can send 32KB
of data from the ground station to the quadcopter in less than 2ms, which is much faster than Bluetooth.

25



5.1.5 Documentation

To allow for future MicroCART teams to be able to continue the progress of this ongoing project in an
efficient manner, we believe some additional documents need to be created that will help guide future
teams through some of the testing procedures and physical concepts we had to learn through a lot of
trial and error and with the help of other graduate students present in the lab. Although it is beneficial to
struggle through some of these issues and gain experience working through problems during the design
and testing process, we would rather students focus on newer, harder challenges that come with
enhancing the current system, not tackling the same issues that have already been solved multiple times
before.

5.2 Validation and Acceptance Test

Most functional requirements will be verified through experimentation in Coover 3050, especially in
preliminary testing, when our system will be using the infrared tracking system available in the lab. In the
future, when we begin using GPS for navigation of the quadcopter, we will gradually move out of the lab
environment for testing purposes.

5.2.1 Quadcopter Software

When making updates to the quad software, flying the quad will reveal the most information concerning
adherence to our functional requirements, so we will eventually verify all changes with flight tests.
Where plausible, we will first verify the functionality of the software by observing simple outputs
available on the Zybo board. We plan to test all of the desired functions for the quadcopter, namely
verifying the different autonomous modes including: basic autonomous stabilization, autonomous point
to point navigation, obstacle avoidance, and GPS navigation.

5.2.2 Ground Station

Preliminary testing will involve downloading bulk logged data from the quad using CLI software with the
base station. Further testing will involve testing semi- and full-autonomous modes. Testing
semi-autonomous modes will test the ability of the ground station to forward commands to the quad. A
thorough test of full-autonomous mode will confirm the ability of the ground station to continually
update the control parameters sent to the quad. Eventually, coordinate-based control loops will be
moved to the ground station. When this is done, testing waypoint-based fully-autonomous will test all
ground station capabilities.

5.2.3 Hardware Improvements

After making some improvements to the hardware, before flying the quadcopter, we will ensure by
simple inspection that all of the wire connections appear to be secure, that they will not interfere with
the rotation of the blades, and that they will not move too much during flight. In addition, each time that
we disconnect especially critical wire connections, we will test that the connection was properly re-made
using the continuity test feature of the multimeter. In addition, before too many wires connections are
updated, we will occasionally perform a simple flight test to make sure that all of the connections in the
system are exactly the same.
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5.2.4 WiFi Communication

The WiFi module should be able to send a 32-byte message from the ground station to the Zybo board
and back to the ground station in less than 10ms. This will be tested by modifying the quadcopter
software to echo the location data sent by the ground station, and calculating the time difference
between sending and receiving the data on the ground station. The communication should be reliable at
the sub-10-millisecond latency up to 100 feet without obstructions. This will be tested by pinging the
module outdoors, with a gradually increasing distance between the base station and module. We will
also test the range with the module at various orientations to ensure that the connection is not dropped
when flying. Finally, we will test that the module and ground station will automatically reconnect if the
connection is lost.

5.2.5 Documentation

We want ensure that our documentation that we write is readily usable by anyone who is not familiar
with the quadcopter system and the sub-system for which that the document is written. One approach
to testing that the documentation is clear and easy to follow is to have a member from the team who is
unfamiliar with a particular sub-system to read the procedure and documentation written to explain that
sub-system. For example, to verify the clarity of the data collection and analysis procedure for measuring
and determining the thrust constant of the quadcopter, which is written by the controls sub-team, after
completing documentation on this process, we will have a member from one of the other sub-teams,
such as the quadcopter software sub-team, who is unfamiliar with the physics of the quadcopter and its
utilization for the testing procedure.

5.2.6 PID Controller Design and Physical Model of the Quadcopter

The controls sub-team must also become very familiar with the quadcopter software, and must also be
able to describe the high-level structure of the code as well as be able to vividly describe how data is
brought in and processed from sensors on the Zybo board, which represent the angular position and
velocity of the quadcopter, as well as its linear position and velocity. In addition to having this level of
conceptual understanding of the quadcopter software and being able to explain the data processing
steps being performed in the software, the team’s PID controller design must also be able to maintain
the position of the quadcopter and it must be stable, rather than experiencing uncontrolled oscillations
that gradually get larger and eventually cause the quadcopter to yank its tether and fall to the ground.
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6 Design Requirements and Specifications

6.1 Functional Requirements

Below is a brief explanation of the functional requirements of our quadcopter system, which includes all
of the technical requirements describing the behavior we want the quadcopter to have in its final
version. The enumerated functional requirements in this section will thus be gradually incorporated into
our project over the course of these next two semesters.

6.1.1 Quadcopter Software Functional Requirements

The quadcopter will be able to receive waypoints from the ground station, and autonomously
navigate to them, then remain there until further waypoints are given.
The quadcopter shall be able to fly in manual mode without a connection to the ground station.
The quadcopter will be able to send messages to the ground station with two methods:

o Guaranteed delivery method, to ensure important data will be received

o Non-guaranteed method
The quadcopter shall be able to connect to the Sparkfun LiDAR Lite module, take measurements
from it, and use those measurements as the altitude information for autonomous flight.
The quadcopter shall be able to connect to a GPS module, take measurements from it, and use
the GPS coordinates as information about the horizontal location of the quadcopter.
The linux operating system shall be capable of communicating with the real-time processor with
less than a 1 millisecond round-trip latency

6.1.2 Ground Station Functional Requirements

The ground station will be able to connect to the quadcopter using WiFi, with less than 10
milliseconds round-trip latency, to enable safe and reliable autonomous flight

The ground station will be able to send waypoints to the quadcopter in the form of relative
coordinates

The ground station will create event logs and save information about the quadcopter
continuously, when the quadcopter is both in both autonomous and manual mode, at a rate of at
least every 20 milliseconds

The ground station will be able to send information to the quadcopter with two methods: A
guaranteed delivery method, and a non-guaranteed method

6.1.3 Voltage Regulator Requirements

The voltage regulator will output 5v +/- 2%

The voltage regulator will provide up to 3A continuous and stay within voltage spec
The current monitor will measure up to 30A at 12-bit accuracy

The voltage monitor will measure up to 13v at 12-bit accuracy

The solid state power switch will be capable of handling up to 30A continuous current

6.1.4 Wifi Module Functional Requirements

The ground station will be able to send 32 bytes to the quadcopter in less than 5ms, and the
quadcopter will be able to send 32 bytes to the ground station in less than 5ms.
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The quadcopter and ground station will be able to communicate for up to at least 100 ft without

obstruction.
The WiFi module will be able to send data over a protocol that guarantees delivery.

6.1.5 Control System Functional Requirements

The quadcopter, while in autonomous mode and while in the Coover 3050 lab, shall be able to
hover and remain at a fixed point, deviating less than 1 foot at maximum.

The quadcopter, while in autonomous mode and while in the Coover 3050 lab, shall be able to
travel from a point in space to another point in space autonomously in 7 seconds or less, when
given a position input from the user in the GUI interface.

The quadcopter, while in autonomous mode and while outdoors with adequate GPS reception,
shall be able to hover and remain at a fixed point, deviating less than 4 feet at maximum.

6.2 Non-functional Requirements

In this section, we list the non-functional requirements we have determ of the project, including
requirements that our quadcopter project should have, that are not necessarily direct behaviors we want
to implement in the system, but attributes we want our system to have. These non-functional
requirements should include more detail about how we want to do our design work.

6.2.1 Current Quadcopter Software Non-functional Requirements

The autonomous flight mode should be stable and without oscillations increasing in magnitude
Sending messages over the guaranteed and non-guaranteed methods should not require
excessive burden on the programmer.

The quadcopter should be able to fly without requiring a ground station or camera tracking
system to be initialized.

LiDAR should provide accurate enough altitude to enable autonomous takeoff and landing for

future control systems.
Communicating between Linux and the dedicated control algorithm should not require extensive
work to perform the inter-processor communication.

6.2.2 Ground Station Non-Functional Requirements

Written largely in C

Maximize code reuse between CLI and GUI programs
Leave readable code for future teams

Design to allow modular replacement of components
Code should be written to good, safe standards.

6.2.3 Voltage Regulator Non-Functional Requirements

The custom PCB shall be small enough to fit in the spare space on the quadcopter frame
All ESC signals shall be broken out to allow custom signal injection

The WiFi module shall be placed on the board in an orientation that does not affect signal
strength

All wiring shall be neatly routed to and from the PCB
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6.2.4 Wifi Module Non-Functional Requirements

e The WiFi module should be lightweight and low power
® The communication should be fast enough to enable running the control algorithm on the
ground station

6.2.5 Control System Non-functional Requirements

® The control system shall be implemented with a PID controller
® The quadcopter shall be controlled with 9 PID controllers, consisting of the following:
O 3 PID controllers controlling the angular position of the quadcopter
o 3 PID controllers controlling the angular velocity of the quadcopter
o 3 PID controllers controlling the linear position of the quadcopter
® Each PID controller shall be implemented as a PID_controller object within the quadcopter
software, having the following fields:
o Ki constant, the integral constant of that particular PID controller object
o Kp constant, the proportional constant of that particular PID controller object
o Kd constant, the derivative constant of that particular PID controller object
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7 Challenges

Include any concerns or details that may slow or hinder your plan as it is now. These may include
anything to do with costs, materials, equipment, knowledge of area, accuracy issues, etc. This should
also include risks, an assessment of the feasibility of this project, as well as considerations of cost with a
realistic estimate of project costs.

7.1 Risks

Some possible risks that our team may incur, which would slow our progress while working on this
project, include possibly damaging the hardware or other equipment on the quadcopter. This would
increase the amount of money spent, beyond what we specify in our estimated project costs in the
upcoming section, and it would additionally pause our progress until we can purchase and implement
replacement parts.

Another important risk that our team must try to prevent from occurring is having a lack of
communication between sub-teams and with the advisers. Not having good communication poses a
problem because when working on a project it is important to communicate when major obstacles come
in the way, instead of quietly trying to resolve the issue personally, for it is very useful to discuss
potential solutions and come up, as a team, with the best course of action to follow. In addition, when
changes are made to the current system without good communication with other team members,
whether they are small or large, this can cause great inefficiencies in development and may require an
annoying, tedious process of undoing large amounts of work done to find the original issue between
what different sub-teams were expecting in their design and rework what was done so that all teams
have a consistent understanding of the system and have that understanding reflected into their own
contribution of the current design.

7.2 Feasibility Assessment

Physical modeling of the quad requires an accurate way of determining moments of inertia. Historically,
this task has been completed with experiments involving the ECP. However, after thorough
experimentation, we have determined that the ECP gives inconsistent data, so we will need to develop a
new method of accurately measuring the moment of inertia of the quadcopter. Fundamental obstacles
like these will delay our progress, since we need certain functionality to be in place before we can move
on to the next tasks in order.

So, if and when we run into these obstacles, it will cause us to be behind on our scheduled goals
according to our timeline, which is in the next section, Section 8. And indeed, our timeline is quite tight,
so it will be difficult to keep up with our goals once we get behind. This may prevent us from being able
to accomplish some of our final goals at the end of next semester, like doing advanced flight maneuvers
or incorporating a camera sensor onto the quadcopter for outdoor flight.

7.3 Cost Considerations

The motors used by the quadcopter are no longer manufactured or supported, so we will likely need to
invest in a new set of motors, as well as backup motors, in case one of the current motors is broken. In
addition, for some of the hardware improvements we had in mind, we will need supplies to create the
power distributor and voltage regulator circuit, which will be on a PCB. These items have been
approximated for cost[4] and included below, in Table 1:
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ltem Associated Cost
6 new motors $200
Supplies for power management circuit $100
Total Cost $300

Table 3: Cost Considerations
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8 Timeline

To have a successful attempt at our senior design project, we will need to come up with an approximate
schedule for when we want to have our tasks completed over the course of the next two semesters.
Therefore, we followed the advice of our senior design professor about “working backwards”. So we
discussed together as a group our goals for this semester, what our needs are for tasks we must have
accomplished before the start of next semester, and thus, what we need to accomplish over the course
of this semester to get to an ideal state for the overall project so that we have time to accomplish
everything that we would like in Spring.

After deciding these “milestone” points, we went through the individual tasks we wanted to complete
for each milestone, thought of about how long that task would take us to accomplish, and came up with
a general sense of by what time we wanted to accomplish it. Thus, using this method of scheduling out
our tasks over the next academic year, we came up with the timelines presented in the next two
subsections. One representing, the time schedule for our tasks over the rest of this semester, Fall of
2016, in section 8.1, and the other representing our scheduled tasks over the course of the following
semester, Spring of 2017.

8.1 First Semester

For the first semester, our team must first become very familiar with the current structure of the
guadcopter software structure and code, as well as the hardware setup of the system, thus gaining a
more textured understanding of how the system works on a high-level and at much lower levels as well.
In addition to being a first step toward our senior design project, this is also somewhat of a continuous,
ongoing process, for as we work with different parts of the system more closely, we should try to
become even more familiar with that particular sub-system and gain a very good understanding of how it
works and relates to the other systems within the quadcopter.

To achieve these goals, our team will spend time reading documentation created by last year’s team,
including their final report, their systems level diagrams of the system overall, and the procedures they
wrote on how they took measurements of the quadcopter. In addition, to gain a more intuitive sense of
how the quadcopter system flies, responds to different manual inputs, and controls its position in space,
we will all learn how to fly the quadcopter adequately well.

We will also need to work more closely with the MicroCART quadcopter and replicate what previous
semesters have done to implement the current abilities and functionality of the quadcopter, thus getting
us more familiar with not just what the previous team has done to program the system to maintain its
current position with some manual inputs, but also how their programs work in detail, for the
guadcopter to remain steady.

In addition, we will need to start taking measurements and characterizing the quadcopter. This includes
measuring the moment of inertia of the quadcopter about the roll, yaw, and pitch axes, as well as
measuring the thrust constant and drag constant. There are additionally many other measurements we
will have to take, all of which are listed and in the graduate thesis.

Taking measurements is important in order to build on a mathematical model of our system and perform
system identification to design an optimized control system by systematically deriving the PID constants
for controlling the motion of the quadcopter about different axes of rotation and with respect to its
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linear position axes, defined from its own point of reference. See our Fall semester timeline below in
Figure 16 starting from the beginning of October.

Timeline

Sep Oct Now Dec Jan

Wifi Communication

System Identification

Develop Back End

Simulink Model Design

Develop CU

Practice Flying

Autonomously Hold Z Position

PID Controller Design

Figure 17: Fall Semester Timeline

8.2 Second Semester

For our second semester, we must continue our progress we made in the first semester, as needed, if we
get behind on our first semester schedule. Additionally, we need to go beyond what we accomplished
our first semester. This will include us building on the foundation we laid out during our first semester,
which is characterizing the quadcopter, developing the 9 optimal PID controllers, and fine-tuning these
constants so that we can enable the quadcopter to hover and hold its position in space autonomously, as
well as to fly autonomously to different waypoints which we specify in space, using the GUI interface
designed for this very purpose.

On top of this foundation of the capabilities of the quadcopter, and assuming we have completed
everything on time, according to our timeline laid out for the rest of this semester, we can do many
interesting things our second semester, and possibly make progress on our ideal goals listed at the end of
the semester if we have time. Our goals for the second semester include being able to fly the quadcopter
outdoors autonomously, using a mixture of GPS data and accelerometer data so that the quadcopter can
determine a best approximation of its position in space, and fly quite accurately, while overcoming the 1
meter range of error that comes with GPS. If we can successfully get to this point, then we can start
looking into some of the other functionalities we wanted to implement, as well, including performing
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advanced flying maneuvers, such as rotating while moving in a line in a horizontal plane. Our scheduled

time line for the second semester is recorded below in Figure 17:

Timeline

Jan Feb Mar Apr
PID Controller Design

Autonomously Hold ¥, Y Position

.
Develop GUI I
I

LiDAR
Power Management

Autonomous Waypoints

Linux

GPS with accelerometer

GPS only I
I

Advanced Flight Maneuvers

Figure 18: Spring Semester Timeline

May
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9 Conclusions

This year (the 2016 to 2017 academic year), MicroCART will improve the current system by designing PID
controllers to manage the movement of the quadcopter in each axis of rotation and linear motion.
Eventually, starting next semester, we will begin the process of enabling the quadcopter to fly outdoors
using GPS navigation, along with a LIDAR sensor attached underneath to detect its height above ground
or obstacles located beneath it, which will be important for achieving successful landings. Finally, after
accomplishing these main goals listed, we would potentially like to enable the quadcopter to perform
advanced flying maneuvers, as well.
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