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1 Definition of Terms 

Below are some of the terms we use regularly in this design document: 

Term Description 

CLI Command Line Interface, will be used to take in user input to get data from the 
quadcopter and give it flight commands 

ESC Electronic Speed Controller, a component between the Zybo board and the motor, 
which takes in a PWM signal from the board and converts this to an amplified 
current to control the speed of the motor 

GUI Graphical User Interface, will be used to take in user input to get data from the 
quadcopter and give it flight commands 

LiDAR Light Detection and Ranging, a laser used to detect and measure distances (ranging) 

MicroCART Microprocessor-Controlled Aerial Robotics Team, our senior design team 

PCB Printed Circuit Board, will be designed to include a battery voltage regulator and 
power distributor for improved power management on the quadcopter 

PID Proportional-Integral-Derivative, a commonly used type of feedback controller 

PWM Pulse-Width-Modulation, a digital signal with varying duty cycle but constant period, 
which is received by each of the ESCs to control the speed of each motor 

CI Continuous Integration, a software design process where every change to the 
software triggers an automatic fresh compilation and running of tests 

Table 1: Definition of Terms 
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2 Introduction 

The MicroCART (Micro-processor Controlled Aerial Robotics Team) senior design project has been 
passed down from team to team since 1998, developing a quadcopter as a research platform. The 
MicroCART quadcopter (​Figure 1​) has been flying in the Distributed Sensing and Decision Making 
Laboratory, using the twelve-camera infrared tracking system for navigation. 

  

Figure 1: MicroCART Quadcopter 

2.1 Project Statement 

We intend to create a modular platform for research in controls and embedded systems. In addition, we 
intend to advance the abilities of the existing quadcopter platform, including flying autonomously to a 
sequence of user-specified waypoints, as well as flying independently from the infrared tracking camera 
system. 

2.2 Purpose 

By creating a modular platform, any controls student should be able to design their own controller and 
test it with our system. Additionally, our project should represent and demonstrate the capabilities of 
the Electrical and Computer Engineering Department, in order to excite new students, offer a hands-on 
platform to learn about control systems, and better represent the talents of our department to visitors, 
interested students, and faculty members. In this aspect, our system will likely be utilized in the controls 
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systems course, EE 476, to help students develop a more intuitive understanding of PID controllers and 
provide a platform for students to test their controller designs. 

2.3 Goals 

Our advisors, Dr. Jones and Dr. Elia, had some high-level goals for what they wanted from our project, 
which can be summarized by the following points: 

● Build a modular system for the quadcopter, so that each component can be easily removed and 
replaced by another of the same functionality, without breaking the operation of the entire 
system 

● Design a control system for the quadcopter from a mathematical model representation of the 
quadcopter system, rather than from iterative testing procedures as done by previous teams 

● Decrease the communication latency between the quadcopter and the ground station to be less 
than 10 milliseconds on average, to increase the stability of the system overall, which will most 
likely require WiFi communication rather than the current Bluetooth communication system 

● Ensure that the communication system and controls system work together robustly, such that if 
any data packets are dropped, the quadcopter does not lose control and potentially damage 
itself 

● Create a user-friendly GUI with an attractive multi-panel layout and click navigation features for 
the user to easily specify waypoints for the quadcopter to travel between 

● Throughout the development process, create detailed and user-friendly documentation and 
tutorials for future MicroCART teams to follow and learn from, including video tutorials as well, 
and keeping the two-decade-long Wiki page up-to-date 

● Advance the autonomous flight capability to support waypoint navigation 
● Enable the quadcopter to fly without the ground station 
● Enable the quadcopter to fly outdoors by integrating appropriate sensors onto the quadcopter 

For autonomous flight, our goal was to develop a mathematical model of the quadrotor, and from this 
model, design several PID controllers for each direction of movement. We also wanted a user-friendly 
graphical interface with an attractive multi-panel layout and click navigation features for the user to 
easily specify waypoints for the quadcopter to travel between. We also hoped to develop the ability to 
fly without the infrared camera tracking system in the lab. 

In terms of improving the modularity of the system, our goal was to provide a clear separation between 
controllers, application logic, and hardware implementation details. This was obtained through the use 
of a node-based structure for controller computations and defining abstract interfaces that interact with 
the hardware. 

To generally improve the quality and stability of our system, we wanted to ensure that the 
communication system and controls system work together robustly, such as by preventing data packets 
from being dropped, which could cause the quadcopter to lose control and potentially damage itself. 
Additionally, we planned to improve the communication latency between the quadcopter and the 
ground station. Finally, we wanted to improve the state of the hardware, with better wire connections 
and removing unnecessary hardware components.  
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3 Design and Implementation 

The design of our quadcopter system can be divided into three major components: the development of 
the quadcopter software, the ground station, and the PID controllers.  

3.1 High Level Diagram 

The system is primarily composed of 4 subsystems, the quadcopter itself, the ground station, the 
tracking system in our lab, and a RC controller. The quadcopter has been built from the ground up by 
previous teams. The ground station is simply a computer, running the ground station software. The 
tracking system in our lab is composed of 12 infrared cameras that allow us to determine the real-time 
precise location of the quadcopter. This position data is forwarded to the quad via the ground station, 
where it can be used in the control algorithms onboard the quadcopter. We can also manually control 
the quadcopter explicitly, using the RC controller. The ground station also features a GUI to control and 
monitor the quadcopter, such as giving the quadcopter waypoints to follow autonomously. 

 
Figure 2: High-Level System Diagram 

3.2 Quadcopter 

We inherited both working hardware and software for the quadcopter from previous teams, which was 
used and modified for our purposes. After our contributions, the software underwent a significant 
architecture redesign and a re-implementation of the control algorithm. We also added the necessary 
software in order to support new devices we added to the quad, namely LiDAR, Optical Flow, and GPS. 

The Zynq-7000 SoC, as shown in ​Figure 3 ​below, runs the software on the quadcopter. 
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Figure 3: Zynq-7000 SoC on Zybo Board 

3.2.1 Directed Graph Based Calculations 

The original control algorithm was implemented in a traditional line-by-line software style, but this 
design presents a number of issues for a research platform: 

● It inhibits fast and iterative changes to the control algorithm, since any change would require a 
recompilation of the software and subsequent transfer of the new code onto the quad. 

● Adding new control algorithms and filtering techniques by a student or researcher would require 
detailed knowledge of the quadcopter’s design and structure. 

In order to overcome these issues, we re-implemented the control algorithm using directed graph based 
calculations. 

 

Figure 4: Example Graph for Directed Graph-Based Calculations 

 

In a traditional graph, nodes typically represent some sort of data. However, in this type of design, each 
node represents a function, while the edges represent some value. Computation of the entire graph 
requires the use of a depth-first graph search algorithm, which proceeds as follows: 
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1. Begin search at the desired outputs; in our case, this would be the signal mixer, which computes 
the final motor values. 

2. Recursively visit each parent, and once each parent has been visited, calculate the function for 
this node, using the outputs of its parents. Once the function has been computed, store the 
output and return, allowing its child to continue computation. 

A typical computation graph is visualized in ​Figure ​5​. In it, the outputs of each node are visualized on the 
graph edges, which feed as inputs to other nodes. 

 

Figure 5: Graph Chain for Autonomous X Control 

 

For our implementation, we have “value” nodes that represent constants and inputs to the graph. Inputs 
are either sensors, e.g. accelerometer, or user inputs, e.g. waypoint positions. In ​Figure 5​, the nodes for 
autonomous X control are visualized. Data flows from left to right, with sensors such as VRPN data and 
gyroscope feeding into PID blocks that feed forward towards the signal mixer. 

In addition to PID computation, sensor processing and conversion can also be implemented in the graph. 
Code for our filters, including the complementary filter, low-pass filter, yaw correction, and integration, 
can be implemented as reusable blocks and placed into the graph. 

Structuring the graph using directed graph calculations allows for dynamic changes to the structure, 
automatic visualization of the controller, and ease of integrating new code, such as controllers and 
filters, that were developed externally of the MicroCART platform. 

3.2.2 Application-Platform Separation 

The quad software we inherited from previous teams was designed with tight coupling between the 
application layer and the platform layer. We consider the application layer to be any code that only 
requires standard C libraries and the platform layer to be code that requires platform specific libraries 
and functions. In our case, the platform of consideration is the Zynq processor and its associated 
libraries. 

This tight coupling prevents effective testing of the quad software, since the platform-specific code 
dictates that the software can only be compiled for the processor on the Zybo (and hence, only able to 
be tested on the Zybo board). In order to be able to run unit tests on our laptops and on a continuous 
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integration server, the code must be able to compile in a Unix environment. Hence, we redesigned the 
quad software architecture in order to introduce a distinction between the application layer and the 
platform layer. We accomplished this division by implementing a driver layer between the application 
and our target platforms. 

 
Figure 6: Application Platform Interface Design 

 

Each driver could be consider an interface in an object-oriented sense, containing a number of 
unimplemented functions that represent certain hardware features and functionality provided by the 
platform. These include turning on LEDs, receiving data from I2C devices, outputting PWM signals for 
the motors, and other functionality provided by the platform.  

 

Figure 7: Quadcopter Software Re-Architecture 
 

When selecting a particular platform (Zybo or Unix), these interface-like drivers are populated with 
functions appropriate for the platform of choice. In consequence, we can still compile our code for the 
Zybo by implementing these functions in order to interact with the Zybo board, but we can also 
implement these functions with mock behavior that uses no Zybo-specific libraries, which can compile 
and run in a Unix environment. We call this quadcopter with mocked functionality our virtual 
quadcopter, and it enables many forms of testing at the application layer. 
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3.2.3 LiDAR Integration 

To achieve height determination agnostic of the camera system, we used a LiDAR sensor. The LiDAR 
sensor provides laser-based proximity sensing with an accuracy of ± 2.5cm, with 1cm precision. 
Originally, we planned to integrate this sensor onto the existing I2C bus on the Zybo board already 
configured by previous teams, but we encountered clock signal issues that we could not resolve. To 
maintain the reliability of the IMU sensor, a new I2C bus was created and on which this LiDAR sensor 
was added, and then an appropriate driver was implemented for this device to be used with the 
application. 

 
Figure 8: LiDAR Sensor 

 

3.2.4 Optical Flow 

To achieve x-y coordinate determination agnostic of the camera system, we used an optical flow sensor. 
This sensor uses image processing of the ground below the quadcopter in order to calculate x-y velocity. 
We then integrate this velocity data within the quad application in order to determine relative position. 
This optical flow sensor was integrated onto the I2C bus with the IMU sensor, and a driver was 
implemented to be used within the quad software. 

The specific sensor we used was the px4flow, a community-developed sensor designed for the PIXHAWK 
flight controller that has fully open-source hardware and software. We chose this particular sensor 
primarily because it was purpose-built for positioning on autonomous flying vehicles. Unfortunately, the 
software had several bugs (primarily related to I2C communication) that we had to find and fix to 
effectively use the sensor. We also found that the on-board SONAR sensor (which was used in the 
calculation of ground velocity) was inaccurate, so we chose to do the final conversion of pixel flow to 
ground velocities in our application using the LiDAR sensor. 

 

Figure 9: Optical Flow Sensor 
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3.2.5 GPS 

While optical flow provides relatively accurate position within a short time span, absolute position 
determination over a long period of time requires the use of a GPS sensor. The GPS sensor provides 
position data accurate to a 1-meter resolution. We characterized the GPS module, and created a stub 
driver within the quad software, but full integration of the GPS module was not completed. 

3.2.6 Communication 

3.2.6.1 WiFi as Communication Protocol 

The inherited system was configured to use Bluetooth as the communication method between the 
ground station and the quadcopter. Bluetooth has high latency, which presents difficulties for 
autonomous flight and running control algorithms on the base station. To improve this, we replaced 
Bluetooth with WiFi, using an ESP8266 microcontroller with integrated WiFi. 

 
Figure 10: WiFi Module 

The WiFi module acts as an access point, so the ground station can connect to the WiFi network hosted 
on the module without any extra configuration. To program the ESP8266, we used the esp-open-sdk, 
which provides a set of drivers and a simple TCP/IP stack. While the SDK supports both TCP and UDP 
protocols, we chose to use the TCP protocol because it more closely matches the reliability guarantees 
of the bluetooth system that was used the previous year. 

To simplify the integration of WiFi with the rest of the quad application, the module simply forwards 
data from UART to WiFI, and forwards the data received over WiFi to UART. This way, no changes are 
required in the quadcopter software to use WiFi as the communication method. The module has no 
concept of the data protocol used between the quadcopter and ground station, which allows us to make 
changes to the communication protocol without modifying the firmware on the module. 
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3.2.6.2 Asynchronous UART Receiving 

The WiFi bridge module passes data received over TCP to serial. In the previous system, reading from 

the UART was implemented as a blocking read once per main loop iteration. Therefore, if more data 

than the UART FIFO could hold (64 bytes) was received before the next read, data would be dropped, 

corrupting the packet, and potentially crashing the quadcopter. 

To overcome these issues, we overhauled the communication system to improve robustness and 

throughput. The major component of this was switching from blocking UART reads to asynchronous 

reads. This involved implementing UART interrupts that would copy data out of the FIFO and into a 

queue, implemented as a circular buffer. Once per main loop, the circular buffer is processed and any 

complete packets are parsed and their callbacks executed. 

We additionally updated the packet parsing and processing to gracefully handle corrupt data and 

eliminated memory leaks we inherited. This eliminated all communication-related crashes and increased 

our effective throughput from 12.8 kbps to 921 kbps. 

 

3.2.7 Hardware Improvements 

Because this project has been passed down over many semesters with the focus of each team being to 
add functionality to the quadcopter, the actual system hardware was in a non-ideal state. Wire 
connections were not very secure, some wire connections were being held together with tape, and 
some plugs were very tight. Along with the rewiring of the quadcopter in general, we redesigned the 
power distribution on the quadcopter system. The old system utilizes 4 AA batteries to power the Zybo 
board and sensors, which is unnecessary weight. These batteries also could not be fully charged as 4 AA 
batteries when fully charged is about 6 volts, when the board is powered off of 5 volts.  

 
Figure 11: Inherited Quadcopter Hardware State 

Overall, we made the following improvements: 

● Replaced all tape-maintained wire connections with secure wire connections 
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● Rewired the I2C bus 
● Regulate the LiPO battery to power the Zybo board using a voltage regulator: 

○ From 11.1 volts to 5 volts 
○ Up to 3 amperes 

● Added a battery monitor to the quadcopter to prevent over-discharge 

3.2.8 Virtual Quadcopter 

Because the quad software was redesigned with an interface layer in order to separate the application 
layer from the platform layer, we were able to implement the driver interfaces with mock functionality 
in a Unix environment. For instance, instead of turning on a physical LED, we can print to the screen 
“LED turned on”. This opens a wide range of behavioral testing at the application layer, where we can 
input certain values to the application and check if appropriate outputs are produced. We call this 
program our “virtual quadcopter.” 

The virtual quad runs as a process in a Unix environment. Its drivers are continuously reading values 
from a Unix shared memory space or FIFO, just as the real quad continuously read from physical sensors. 
We also direct all output to the shared memory space in order to observe the current output value. To 
interact with the virtual quad, one would need to either read from or write to Unix FIFOs or use the 
get/set commands of the virtual quad CLI. For instance, to emulate a quad command typically sent over 
WiFi, the same message can be written to the TX FIFO, and the virtual quad will receive and parse the 
message. To examine the values of the motors, the user can use the CLI, such as “get motor1” and the 
current value of motor 1 will be printed to the screen. 

 

Figure 12: Virtual Quadcopter Design 

3.3 Ground Station 

The ground station software has two main components: 

● Backend Component 
● Frontend Component 

The backend communicates directly with the VRPN system and the quadcopter. It also allows frontend 
clients to connect it to it via a socket interface, which allows the clients to call functionality available in 
the backend, and the backend to send updates to the frontend. 

The frontend can be a simple command-line interface, or a more sophisticated graphical user interface. 
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3.3.2 Backend 

The backend is designed to be a modular piece of the ground station. Any front end, whether it be a 
command line interface or a graphical user interface, connects to the back end via a socket connection. 
This backend accepts input through this socket and forwards it through another socket connected to the 
quadcopter.  
 

Main Backend features: 

● Complete connection to quadcopter through a back end 
● Server-Client relationship between back and and front end 
● Command pass through from front end to quadcopter 

 

Figure 13: Backend Daemon 
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The backend daemon runs and manages connections with the quad. Communication with the quad uses 
a low-overhead binary protocol. It also connects to the tracking system and forwards tracking 
information to the quad. Frontends, CLI or GUI, connect to the backend and issue commands in an 
easy-to-parse, human readable ASCII protocol. These commands manipulate the state of the quad. 

The backend consists of a headless daemon running at all times. This daemon will manage connection 
lifecycle with the quad and tracking system, as well as forward tracker data to the quad. The daemon 
provides a Unix-domain socket for clients (front-ends) to connect and issue commands. 

3.3.3 Front End 

Front-ends may exist in several forms. The first front-end is a simple non-interactive command line 
control program. This program, supporting several subcommands, is able to manipulate the state of the 
quad (active, manual, automatic, set coordinates, command waypoints), retrieve state, and download 
logs. This command runs, issues the command to the backend, and returns any information before 
exiting. The source code for this utility is structured to lend itself to reuse in later front-end 
implementations: the connection to the backend as well as the actual functionality to issue commands is 
isolated from the argument parsing logic. 

The backend daemon allows one or many front-ends to operate simultaneously, and reusable command 
and communication code will make the creation of further front-ends a relatively trivial matter of 
acquiring user input, then calling the proper function to perform the desired operation. UX development 
work was completely isolated from the business logic of controlling the quad. 

3.3.3.1 Command Line Interface (CLI) 

A command line interface (CLI) provides the lowest level of front end ground station control. Users are 
able to set and request any relevant variables such as PID constants and pitch, roll and yaw set points. 
This low level bare bones control will allow for a fast testing environment as well as the ability to quickly 
check our understanding of the system as a whole. The CLI will connect via a socket to the modular back 
end below it. 

The following command abilities for the user are implemented into the command line interface: 

● Display the menu of commands available to the user 
● Get current quadcopter information 
● Set controller graph parameters 
● Modify controller graph structure 

 

 

Figure 14: Command Line Interface Block Diagram 
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The design of the CLI is to create a Client-Server relationship with the BackEnd. The CLI is split up into 
separate programs. These programs will either create a connection and perform the task, or create a 
connection and hold it until the user is done with the task. This will allow tab completion in a shell, bash 
scripting to allow test scripts as well as a history of commands with BASH_HISTORY. 

3.3.3.1 Graphical User Interface (GUI) 

The GUI provides a convenient interface for common tasks and workflows. It is designed to support 
common tasks, including test flights of pre-programmed routes, as well as tuning or adjusting the 
control parameters. Because of the Client-Server model used with the CLI, the GUI is capable of 
coexisting with the CLI and being used simultaneously. 

The GUI is written in C++, using the Qt application toolkit. The Signals and Slots facility of Qt is used to 
provide asynchronous access to the backend and avoid blocking the UI thread’s responsiveness while a 
potentially long operation is occurring, such as a query to the quad. This also simplifies code reuse, as 
the library functions written for use with the CLI are all blocking. This is implemented by the creation of 
a “worker object”, which lives in a separate thread. Actions that require backend queries are performed 
by posting a request signal to the worker object. The action is then performed and processed by the 
worker object (in a separate thread), and the completed result is posted back to the UI thread via 
another signal. 

 

Figure 15: Timing Diagram of a Request to the Backend 

The GUI workflow is separated into three tabs. The first tab is used to establish a connection to the 
backend. The second tab displays the control graph (obtained from the quadcopter) and can adjust the 
parameter values of any blocks in the control graph via a number of selection boxes. This tab also 
contains selectors for a number of important blocks used by other GUI functionality.  
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Because the control graph is dynamic, the GUI must be told which blocks define certain constants. For 
example, the X, Y, and Z setpoints can be adjusted from the Navigation tab. In order for that 
functionality to work, the nodes for those setpoint constants must be set on the Control Graph tab. 

The Navigation tab displays the current position and attitude of the quadcopter, which may be obtained 
either from the tracking system (VRPN camera system) or queried from the quadcopter itself. Setpoints 
can be sent to the quadcopter either individually, or as a 3-tuple (X, Y, and Z/Altitude). Setpoint tuples 
can be saved in a list of waypoints, which can be modified-in-place, exported, and imported. The current 
position of the quadcopter can be saved as a setpoint or appended to the waypoint list.  

Furthermore, Auto-navigation can be enabled with a configurable delay and distance threshold. When 
enabled, this feature will command the quadcopter to the next waypoint once it has reached the current 
setpoint. Additionally, to make the GUI more user-friendly, the Navigation tab provides a sprite 
animation of the current position and attitude of the quadcopter. 

 
Figure 16: GUI Control Graph Tab 

 
Figure 17: GUI Navigation Tab 
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3.4 Control Structure and Tools 

3.4.1 Mathematical Model 

Historically, the coefficients of the PID controller have been determined through iterative optimization. 
Since this approach has a couple of downsides, primarily with regards to scalability, our team's approach 
was to derive a mathematical model representing our entire system. To create this model, we did the 
following: 

● By following the generic quadcopter model described and characterized in [5]. 
○ Performed system identification - measure of quadcopter parameters, including: 

■ Moment of inertia about X, Y, and Z axes 
■ Thrust and drag constants of quadcopter 
■ Motor parameters (i.e. motor winding resistance) 
■ ESC parameters: (i.e. motor “turn on” percent duty-cycle, maximum duty-cycle) 
■ Data communication parameters: (i.e. round-trip latency for camera data) 

○ Designed our model in Simulink using these parameters and the model in [5] 
■ Includes 4 main blocks: actuator, sensor, communications, and controller 
■ Implements calculations and equations in [5] for a physics model of the 

quadcopter 
■ Characterized sensor noise 
■ Followed and verified code structure, create a data flow diagram, and 

implement this logic in the controller and sensor block 

The overall system is composed of four main components including the communication system, control 
system, actuation, and sensor system as shown below in ​Figure 18​. 

 

Figure 18: High-Level System Block Diagram 
 

3.4.1.1 Communication System 

The input to the control system from the communication system is dependant upon indoor or outdoor 
flight. When flying in the distributed autonomous and networked control lab, the x, y, z position of the 
quadcopter in space is determined from an OptiTrack camera system. This information must then be 
passed to the quadcopter through the ground station. However, during outside flight, the x, y position 
are determined from an onboard Optical Flow module, and the z position is determined with a LiDAR 
solution. This Optical Flow module and LiDAR solution will be a part of the sensor subsystem described 
in Section 3.2.3 and 3.2.4, however the model does not currently have these implemented.  
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Additionally, the communication system will also provide any user input from the command line 
interface (CLI/GUI), or controller during manual flight. This overall communication process is 
represented below in ​Figure 19​. 

 

 

Figure 19: Communication System Block Diagram 

3.4.1.2 Control System 

The quadcopter is stabilized by multiple nested proportional-integral-derivative (PID) controllers. This 
will be discussed more in the subsection 3.6.2 Controller Design. 

3.4.1.3 Actuation 

The actuation, or mechanical movement of the quad occurs through the driving of each motor/rotor 
combination. As stated previously the output from the control system provides ESC motor commands, 
these commands are used by the ESC to coordinate what voltage to apply to each motor, represented as 
the vector V in ​Figure 20​. The ESCs themselves are powered from a 11.4V LiPO battery (nominal 
voltage). From there the we can determine the actual angular velocity and acceleration of each rotor 
defined below: 

 
where and  represent the angular velocity and acceleration respectively. From this we were able toω α  

derive the overall block diagram for the actuation of the quad. 
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Figure 20: Actuation System Block Diagram 

3.4.1.4 Sensor System 

The sensor system is composed of the MPU-9150 IMU (Inertial Measurement Unit) which provides 
gyroscope and accelerometer data and is also an input to the control system. Alongside this, during 
outside flight the OptiTrack camera system is replaced with a dedicated Optical Flow module and LiDAR 
solution for determining the x, y, z position of the quadcopter. Data from the gyroscope and 
accelerometer can be used to find the yaw, pitch, roll angles, and angular velocities. With this and either 
the OptiTrack camera system or GPS module and LIDAR solution, we are able to provide all the required 
inputs to the control system.  

 

Figure 21: Sensor System Block Diagram 

 

We have recently been looking into representing these systems in our Simulink model of our quadcopter 

in the best possible way. Currently our software code that takes the readings from the IMU to determine 

the pitch and roll angle of the position of the quadcopter is based on the a few equations. And though 

this makes intuitive sense, since we were able to rederive these equations using basic trigonometry, our 

graduate student advisors, Matt and Ian, have been explaining to us that some researchers may have 
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developed a better way to represent these angles of the quadcopter [2]. We will look into this to see if 

this is indeed a better method that will be worth switching to depending on how much more accurate it 

is as well as how much more effort it requires and complication it adds to the project. 

 
3.4.2 Controller Design 

The quadcopter is stabilized by multiple proportional-integral-derivative (PID) controllers. 

The control system inputs come from both the communication system and sensor system. The entire 
control system is composed of multiple nested PID controllers. The composition of a PID controller in a 
feedback loop is shown below in ​Figure 22​, where r(t) is the set point value, and y(t) is the measured 
output. The primary components of the PID controller include the K​p​ , K​i​ , and K​d​ terms, which denote 
the coefficients for proportional, integral, and derivative  terms, respectively. These coefficients will be 
determined using our mathematical model of the quadcopter. 

 
Figure 22: PID Controller Block Diagram  

 

The overall control system is basically four controllers working in parallel: the height controller (z-axis), 
the longitudinal controller (y-axis), the lateral controller (x-axis), and the yaw controller. The latter three 
controllers have nested PID controllers embedded, as shown below in ​Figure 23​. 
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Figure 23: Nested-Loop PID Architecture 

 

This architecture allows us to not only control the body frame position of the quadcopter, but its 
velocity as well. When describing things in terms of body frame we are referring to the frame of 
reference of the body of the quadcopter. This assumes that the origin of this axis lies at the center of 
mass of the body. The variables utilized in Figure 23 are defined in ​Table 2​ below. Note that in the above 
image variables denoted with the subscript “r” represent setpoint values. 

Variable Definition 

 Body frame x position 

 Body frame y position 

 Body frame z position 

 Body frame x velocity 

 Body frame y velocity 

 Body frame z velocity 

 
Body frame roll angle 

 Body frame pitch angle 

 Body frame yaw angle 
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Body frame roll angular velocity 

 
Body frame pitch angular velocity 

 
Body frame yaw angular velocity 

 
Motor correction command from Z control loop 

 Motor correction command from Y control loop 

 Motor correction command from X control loop 

 Motor correction command from Yaw control loop 

Table 2: PID Architecture Variable Definitions 

Finally, we convert the actual output commands of the controllers to equivalent input commands for 
each of the four individual electronic speed controllers (ESCs). To combine the motor correction values 
from each of the four control loops, we utilize a signal mixer, defined by the following matrix: 
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4 Testing Process and Results 

4.1 Quadcopter Software 

The quad software is tested at 4 levels: unit testing of code, functional testing using the virtual quad, 
dedicated hardware tests for Zybo implemented drivers, and finally actual flight tests. Because the first 2 
forms of testing do not require manual execution, we run our unit and functional tests within our 
continuous integration (CI) software development process, which runs these tests on every change to 
the code base, allowing us to catch errors immediately. 

4.1.1 Unit Tests 

Our unit tests are written in C, using a lightweight testing library that we implemented that runs all tests 
and presents the results. We primarily targeted critical sections of code to cover with unit tests, 
including the computation graph, the packet processing, and a queue library used by the UART interrupt 
system. 

Here is an example of unit test output for the Queue library: 

-------------------------------------------------------------------------------- 
Test results: 
 
#  1: test_free   (passed) 
#  2: test_add    (passed) 
#  3: test_remove (FAILED) 
#  4: test_size   (passed) 
#  5: test_full   (passed) 
#  6: test_empty  (ERROR!) 
 
Total:   4 of 6   tests passed 
-------------------------------------------------------------------------------- 

If any failure or error occurs in the unit tests, the CI test automation will fail, notifying the team of an 
error that needs to be fixed. At the time of this document, all unit tests pass. 

4.1.2 Functional Tests with Virtual Quad 

Using the virtual quad, we can verify application layer behavior, such as ensuring appropriate outputs 
are being produced for certain inputs. These tests have taken the form of Ruby scripts that start the 
virtual quad, and set certain inputs and check outputs using the virtual quad CLI. 

Here is an example usage of the virtual quad CLI: 

----------------------------- 
$ ./virt-quad get motor1 
0.000000 
$ ./virt-quad set rc_gear 1 
$ ./virt-quad set rc_flap 1 
$ ./virt-quad set rc_throttle 0.5 
$ ./virt-quad get motor1 
0.539014 
$ ./virt-quad set rc_throttle 0.2 

26 



$ ./virt-quad get motor1 
0.239014 
--------------------------- 
 
We perform the following tests using the virtual quad: 

● Safety Checks 
○ Ensure motors cannot turn on unless certain conditions are met 
○ Ensure motors can be killed by a single switch 

● Motor Compensation Smoke Tests 
○ Ensure that when the Quad is tilted according to the IMU, the correct motors get 

stronger to stabilize 
● Communication Smoke Tests 

○ Ensure the quad is able to receive bytes through the UART driver, process a packet, and 
return a correct response. 

● Memory Integrity Checks 
○ Ensure there are no memory leaks in the application layer.  

■ We accomplish this by performing a virtual flight test with the virtual quad 
through Valgrind, a program designed to catch memory leaks. 

Because these tests are executed with Ruby scripts, we can also run these tests on CI, meaning that we 
have these assurances on each change to our code repository, with a team notification going out if any 
one test fails. At the time of this document, all functional tests pass. 

4.1.3 Dedicated Hardware Tests 

In order to have test coverage for drivers with a Zybo implementation, we have manual tests written in 
C, designed to run with the Quad connected to the computer. These tests require manual verification for 
the most part. 

Here is the complete list of manual hardware tests we have: 
● A simple “blink” LED test, to verify that the LED and System drivers work correctly 
● Tests that read each I2C sensor, to verify the IMU, LiDAR, Optical Flow, and I2C drivers 
● Tests to examine PWM inputs, to verify the RC Receiver drivers 
● A motor ramp tests, to verify the Motor driver 
● Another LED blink test, to verify the Timer drivers 
● A UART reflection test, where a Python script sends bytes over a USB cable to the UART device 

on the Zybo and checks that the same bytes are sent back. Used to verify the UART driver. 

4.1.4 Live Flight Tests 

For final verification of code and controllers, we need to perform flight tests using the real quadcopter 
and system. Tests using the quadcopter must follow specific procedures to ensure safety: 

1. If major code changes have occurred since the last flight and all of our software tests pass: 
a. We load the code onto the quadcopter, but remove the propellers. 
b. At half throttle, we verify that the basic stabilization works by tilting the quadcopter in 

all four directions and monitoring the speed of each motor. 
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2. If step (1) verifies, then we tether the quadcopter to the ground and attach the propellers. We 
perform a manual flight to verify that the manual mode is still stable. 

3. If our test involves autonomous flight changes, we will take one of the following approaches, 
depending upon the type of the changes and what we are testing. 

a. Have autonomous mode control pitch, roll, and yaw, but keep the throttle manually 
controlled. This lets us start the quadcopter on the ground, and slowly ramp up our 
throttle. Because we start low to the ground, if the controller is unstable, we will notice 
it while still low to the ground and the flight can be aborted without consequence. 

b. For some flights,  starting low to the ground presents difficulties because the ground 
effect causes turbulence, making it more difficult for a controller to remain stable. If this 
is the case, we allow the quadcopter to fly higher in the air, but remain prepared to 
switch to manual mode and land should the quadcopter become unstable. 

After performing flight tests, we analyze the flight logs using data analysis scripts in MATLAB. First, we 

use the DataAnalysis.m script to import the data. Then, we use our own, custom scripts to plot relevant 

data to help us understand why the system performed the way it did. 

 

 
Figure 24: Plots of Nested PID Outputs from “simplePlots.m” Script 
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We analyzed the performance and found the following characteristics of our autonomous controller. 

 

Axis 1-meter Step Rise Time (s) Error Margin (m) 

X/Y 3.1  0.05±  

Z 0.9  0.08±  

Table 3: Rise Time and Error Margin of Position Controllers 

 

4.2 Control Structure and Tools 

4.2.1 Mathematical Model Testing and Results 

By taking experimental data of the angular speed of each rotor and then using equation 5.1 to find our 

estimated rotor speed based on the ESC percent duty cycles, we obtain the following graph: 

 

 
Figure 25: Calculated and Experimental Duty Cycle versus Rotor Speed 

In the above graph the blue line represents our calculated rotor speed based off of equation 5.1, and the 

other lines represent the experimentally determined rotor speeds. From this we can calculate the error 

associated with our calculation: 
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Figure 26: Error Between Predicted and Experimental Rotor Speed 

From this we note that at low duty cycle percentages we have a very higher error; however, this is 
outside of our normal operating range. The typical error we would see within our operating range is 
between 5% and 15%, which is experimentally shown to be acceptable with the robustness of our 
controllers, as will be demonstrated next. 

Additionally, we tested our Simulink model of the quadcopter on each of the four blocks. These tests will 

include the following steps, along with the corresponding results we expect to see in Simulink: 

Test 1 for Simulink Model: Turning all quadcopter motors at the approximate hovering percent 

duty cycle - the percent duty cycle that directly counters gravity’s downward force 

○ Should be approximately hovering  

○ X, Y, and Z position should all be constants 

○ X, Y, and Z velocities should be zero 

○ Roll, pitch, and yaw angles and angle rates should all be zero 

Test 2 for Simulink Model: Turn quadcopter motors on maximum percent duty cycle per motor 

○ Should accelerate upwards 

○ Z position should be a negative parabolic function (Z is positive in the downward 

direction) 

○ X and Y positions and velocities should be at zero 

○ Z velocity should be a negatively-sloped line (Z is positive going down) 

○ Roll, pitch, and yaw angles and angle rates should all be zero 

Test 3 for Simulink Model: Turning motors to right at a slightly smaller percent duty cycle than 

those to left - while setting the gravity vector to zero for simpler analysis 

○ Should roll in positive direction, flipping about its center, while going to the right 

○ X positions and velocities should all be zero 
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○ Y should be a positively-biased sine function that diminishes in amplitude (starts at zero, 

goes positive when quadcopter circles right, then goes back to zero as the quadcopter 

circles around) 

○ Z should be a  negative sine function (starts at zero, goes negative when quadcopter 

goes up, back to zero, goes positive when quadcopter goes down) 

○ Pitch and yaw angles and angle rates should be zero 

○ Roll angle should be a positive and increasing at a parabolic rate 

○ Roll angle rate should be a positively-sloped line 

Test 4 for Simulink Model: Repeat Test 3 but set the motors to the left at a slightly smaller 

percent duty cycle than those to the right - should get the same results, except: 

○ Y position and velocity should be negative of what they were in Test 3 

○ Roll angle and angle rate should be negative if what they were in Test 3 

Test 5 for Simulink Model: Repeat Test 3 but set the motors to the back at a slightly smaller 

percent duty cycle than those to the back - should similar results, but it will be analogous for the 

pitch rotation 

○ Should pitch in positive direction, flipping about its center, while going to the backward 

○ Y positions and velocities should all be zero 

○ X should be a negatively-biased negative sine function that diminishes in amplitude 

(starts at zero, goes negative when quadcopter circles back, then goes back to zero as 

the quadcopter circles around) 

○ Z should be a  negative sine function (starts at zero, goes negative when quadcopter 

goes up, back to zero, goes positive when quadcopter goes down) 

○ Roll and yaw angles and angle rates should be zero 

○ Pitch angle should be a positive and increasing at a parabolic rate 

○ Pitch angle rate should be a positively-sloped line 

Test 6 for Simulink Model: Repeat Test 5 but set the motors to the top at a slightly smaller 

percent duty cycle than those to the bottom - should get the same results, except: 

○ X position and velocity should be positive, not negative, of what they were in Test 5 

○ Pitch angle and angle rate should be negative if what they were in Test 5 

Additional Tests: Try different combinations to predict what the quadcopter will do and if it  

makes sense intuitively. Not only will this be good as it is additional testing for the quadcopter 

model system, but it also helps the tester gain a better understanding for how the quadcopter 

system is supposed to work 

 

From these tests, we tried applying an upward thrust with equal percent duty cycles for each motor, 
expecting to see the quadcopter going straight upward, which would be in the negative z-direction since 
z is positive downward. Then here were the graphs we got as a result: 
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Figure 27: X, Y, Z Position Calculated by Simulink Model 

 

 
Figure 28: X, Y, Z Velocities Calculated by Simulink Model 

As you can see, these calculate results make sense for the linear and angular position and velocities for 
our Simulink model. The X, Y, Z position make sense, because the quadcopter model should be going 
directly upward, which would make the X and Y position zero and the Z position a negative parabolic 
function with respect to time, since it should be accelerating upwards for there is a constant net force 
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upward, and the positive z-position is pointed downward. As a result, the first graph matches our 
expectations. 

Additionally, the X, Y, and Z velocities of the second graph also make sense, since the quadcopter should 
not be moving in any direction in the X and Y directions, thus these velocity values should be zero, 
however it is accelerating upward, thus the Z-directed velocity should be increasing in magnitude, but 
negative in sign, since the Z axis is positive in the downward direction. Thus, these results make sense 
for our predictions and expectations for the behavior of our Simulink model.  

We ran many tests like this on the Simulink physics model, as described in detail above, and examined 
the results in Simulink to verify the accuracy of our physics model. 

We also implemented a mode where we input signals from logged flight data into each block of our 

Simulink model, then we compare the output signal of these blocks with that of the corresponding signal 

from the same logged flight test. Here are some example plots obtained to verify each block in our 

sensor subsystem of the model: 

 
Figure 29: Complementary Filter Output of Model versus Logged Flight Data 

We additionally, looked at the closed-loop system and input setpoints that we ran on the physical block, 

comparing it to what our model predicts for the position of the quadcopter. Here was the resulting plot: 
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Figure 30: X, Y, Z Position of Model versus Logged Flight Data 

As you can see, over a 50-second time period, the model is closely matching the position measured by 

VRPN with the different setpoints. The first few seconds are a bit different, but this is only because of 

the different initial conditions of our model, which always starts from zero, compared to the initial 

conditions of the position of our actual quadcopter, which is offset from the (0, 0, 0) point of the flying 

volume in the lab. 

4.2.2 PID Controller Testing and Results 

The current tests we have performed with regards to the PID controllers are primarily error calculations 
from the mathematical model of the quadcopter. To obtain accurate PID constants we need to model 
the quadcopter as best as we can to simulate a real scenario. One portion of this model involves the 
relationship between the electronic speed controllers (ESCs) and their relationship to the rotor speed. 
This relationship is as follows: 

 

 
 

      (4.1) 

 

34 



 

Variable Definition 

 Rotor Speed 

 Internal motor resistance 

 Motor torque constant 

 Motor back-emf constant 

 Motor internal friction current 

 ESC input duty cycle ratio 

 Nominal battery voltage 

Table 4: Rotor Speed Equation Variable Definitions 

For our testing procedure, we need to take experimental data of the angular speed of each rotor and 

then use the above equation to find our estimated rotor speed based on ESC input duty cycle 

percentage. With these data, we represent a relationship with our experimental data of the motor 

speed with respect to the percent duty cycle of the input PWM signal, and we can compare this with our 

predicted motor speed using the expression derived above. This test will be done for each of the 4 

motors. 

See section 4.1.4 Live Flight Tests for the testing procedure and results of the control system testing. 

4.3 WiFi Bridge 

The UART interface for the WiFi bridge can be tested by directly connecting the RX/TX lines on the WiFi 
bridge, and connecting to the WiFi module with a simple terminal(PuTTY on Windows, netcat on Linux). 
Every command sent over the terminal should be echoed back. This is a simple test to verify that we can 
send large and small amounts of data without loss. 

For more robust testing, we have created a test script in Python that will send arbitrary sized packets, 
with different delays. It verifies the integrity of the packet, and records if any data was corrupted or lost. 

We currently have implemented and tested the TCP portion of the WiFi bridge. We have run the test 
with various packet sizes and delays, to verify that the WiFi bridge is able to sustain the data rates that 
we will be sending. During regular flight, we will be sending roughly 32 bytes every 10ms. To verify that 
we are able to reliably send sufficient data, we have simulated 30 minutes of flight time, sending 350 
bytes every 10ms, without losing any data. 

We have done timings for round-trip between ground station and quadcopter response. ​Figure 31 
shows the latency distributions for WiFi vs. Bluetooth communication. 
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Figure 31: TCP versus Bluetooth Latency Distribution 

4.4 Hardware Improvements 

For the voltage regulator, we will first verify that the output voltage is within our required specifications. 
Then, we will increase the load on the system using high-power resistors until our maximum current 
rating is reached. At that point, we will verify that the output is still within the specifications. 

After the voltage regulator has been fully tested, the last system to test are the connections for the ESCs 
and the WiFi module. For this, we will simply perform continuity tests between all connections to make 
sure that they are properly connected. Then, we will connect all of the devices and verify that all signals 
are being properly routed without being distorted. If all signals are correct, the board is functional. 
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5 Conclusion 

This year (the 2016 to 2017 academic year), MicroCART has improved the current system by increasing 
modularity and designing PID controllers to manage the movement of the quadcopter in each axis of 
rotation and linear motion.  

We have also implemented LIDAR and Optical Flow sensors to enable flights outside of the camera 
tracking system in the lab, as well as a more modular and extendable control structure. 

Additionally, we were able to develop a mathematical model of the current quadcopter system to help 
future teams more easily find controllers that stabilize newer systems. This development, along with the 
new graphical computation library, offers future MicroCART teams and ECpE students a more 
manageable way for changing controller schemes quickly.  

Alongside these major improvements, we also made progress in areas such as reduced latency using 
Wifi, better testing schemes for both hardware and software integration, and development of a 
user-friendly GUI. All of this was done in an attempt to create a system that could be used in the future 
as a learning platform for students interested in controls and embedded processing. 
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Appendices 

Appendix A: How to Fly the Quadcopter 

Follow these instructions to get the quadcopter up and running in Coover 3050. 

Setup Infrared Camera System 

1. To start up the camera system, log into the camera system computer (co3050-07) with the 

following username and password: 

 

username: ​.\microcart 

password: ​microcart 

 

2. Once the OS is done loading, start up the program "Tracking Tools" 

3. From the startup window, choose "Open existing project” 

4. Choose "TrackingToolsProject 2017-01-13 5.30pm" (or a more recent project)  in the 

"Optitrack_Configuration" folder 

5. Then go to File -> Open and choose "Microcart" in the "Optitrack_Configuration" folder 

6. This should create a "UAV" under "Trackables" in the Project Explorer on the left side of the 

screen 

7. Now you should be able to move the quadcopter trackable around in the tracking area, and see 

it update in real-time on the screen. 

Setup Ground Station 

1. On the ground station computer (Co3050-microcart), log in with the following credentials.  

username: ​ucart 

password: ​microcart 

2. Navigate to the ground station folder in a Terminal.  

 

$ cd {project_root}/groundStation 

$ ls 

BackEnd  Cli  logs  Makefile  obj  README.md  src  ucart.socket 

 

3. If the project hasn't been built in a while, re-make the project: 

 

make vrpn 

make 

Setup Transmitter 

1. The RC transmitter is used to manually control the quad. 

2. Ensure the transmitter has the following state before turning it on: 

a. "Gear" is set to 0 
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b. "Flap" is set to 1 

c. Throttle is set to the lowest position 

3. Turn on the transmitter. 

Setup Quadcopter 

This section assumes the quad already has a prepared boot image inserted into the SD card port and 

that a properly charged Li-Po battery is ready for use. 

1. Prerequisites 

a. Make sure the connection to the motors from the main power line is disconnected. 

b. Make sure the previous setup sections have been done prior starting this section 

2. Insert the Li-Po battery into the holder beneath the quad, and plug it into the quad. 

3. Turn on the Zybo Board using the switch. 

a. The "PGOOD" Light should turn red. 

b. After the program has been completely loaded, the green DONE LED should turn on. 

4. Ensure the quadcopter and transmitter has connected successfully. 

 
Figure 32: Transmitter Connection Light 

a. The RC transmitter should have GAUI 330X selected and displayed on the screen. With 

the quadcopter and transmitter on, the unit on the quadcopter labeled Spektrum AR610 

should have a blinking orange light or solid orange light (It is easier to see the orange 

light from the top of the receiver). If this is not blinking or solid, try restarting the 

quadcopter and transmitter with the transmitter closer to the quadcopter. 

5. Plug connect the motors to the main power line. 

Start the Ground Station (CLI) 

Execute the following on the ground station from the root of the ground station folder. 

In one terminal, run the backend 

./BackEnd 

Finally, in another terminal, export the socket path, and then execute any CLI commands that you like: 
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./Cli setparam 'X pos PID' 'Setpoint' 1.000 

# ... other CLI commands 

Start the Quad 

1. Using the transmitter, flip the "Gear" switch to 1. 

a. You should see the green LED4 MIO7 turn on. 

2. Start flying the quad. Below is a summary of how the manual controls work:  

 
Figure 33: RC Controller Operation 
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Appendix B: Changes to Original Design Plan  

Originally, we planned to make our controller structure for the X and Y loops have 3 nested PID 

controllers. Here was the original control structure we planned on having originally: 

 
Figure 34: Original Control Structure 

However, we found that we were able to find stabilizing controllers using a fourth nested loop, with a 

velocity PID controller between the position and pitch. Because of the better, more stable performance, 

we decided to change our control structure to include this fourth PID for the X and Y control loops. 

Another addition to our design we added was the Optical Flow sensor. We included this because we 

realized that using GPS to obtain our X and Y position could become problematic if we are flying in a 

place with poor reception, such as in the courtyard of Coover. In these areas, the Optical Flow sensor 

can provide us with good values for the change in X and Y position of the quadcopter by integrating the 

velocity vectors found in these two directions. 

Finally, another major improvement we made to increase the modularity of the entire system was to 

create a node-structure representation of the control system on the quadcopter. We did not think of 

this design initially, which is why we did not previously have it in our design plan, but when a member of 

our group thought of it, we realized how useful this structure would be to make the entire platform 

more modular, so continued this approach. With this implementation, each element of the control 

structure can easily be replaced with any block of C code that the user writes, and the connections 

between different nodes can easily be changed to change the control structure or to bring in data from 

different sources, rather than having to make large modifications to the code. 
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Appendix C: Suggestions for Future Work 

Future improvements that can be made to the system, such as by future MicroCART teams: 

● Create a PCB power board with the following features: 

○ Voltage regulator for powering Zybo board 

○ Reverse polarity protection 

○ Sense current to determine power drawn 

○ Battery voltage monitor 

● Implement GPS position data acquisition (driver for GPS has been created) 

● Edit Simulink model to include the Optical Flow and LiDAR sensor, which should include: 

○ Noise characteristics of the sensors 

○ Biases in the sensor data  

42 



References 

[1] ​Bluetooth vs Wi-Fi. (n.d.). Retrieved November 19, 2016​, from  

http://www.diffen.com/difference/Bluetooth_vs_Wifi  

[2] Cavallo, A., A. Cirillo, P. Cirillo, G. De Maria, P. Falco, C. Natale, and S. Pirozzi. ​Experimental  

Comparison of Sensor Fusion Algorithms for Attitude Estimation​. Thesis. Second University of  

Nepales, 2014. Aversa: ScienceDirect, 2016. Print. 

[3] Ogata, Katsuhiko. ​Modern Control Engineering​. 5th ed. Englewood Cliffs, NJ: Prentice-Hall, 1970. Print. 

[4] "Products." ​DJI Store​. DJI, 2016. Web. 12 Oct. 2016. <​http://store.dji.com/​>. 

[5] Rich, Matthew. ​Model Development, System Identification, and Control of a Quadcopter Helicopter​.  

Thesis. Iowa State University, 2012. Ames: Graduate Theses and Dissertations, 2012. Web. 

[6] ​Zynq-7000 All Programmable SoC Overview​. DS190 (v1.10). Xilinx. September 27, 2016 

 

43 

http://store.dji.com/

