close all; clear all; clc; filename = 'imu.csv'; data = load_IMU_data_from_csv( filename ) ; t = data.t; ax = data.ax; ay = data.ay; az = data.az; gx = data.gx; gy = data.gy; gz = data.gz; % analyze the noise (deviation from mean) on each axis and compare the % emperical distribution to one generated from a quantized Gaussian % distrubtuion with the same variance. quantized_accel_noise_gauss_anal( ax , 'x-axis') quantized_accel_noise_gauss_anal( ay , 'y-axis') quantized_accel_noise_gauss_anal( az , 'z-axis')